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Abstract  

The rapid expansion of virtual services in Libya has led to a significant increase in data center electricity consumption, 

further exacerbated by frequent power outages and inadequate cooling infrastructure. To address these challenges, the 

proposed approach employs an XGBoost‑based model to enhance energy efficiency, utilizing 18 months of operational data 

from three data centers located in Tripoli, Benghazi, and Misrata. The model achieved 94.7% forecasting accuracy for 

short‑term electricity demand (MAE = 3.2 kW, RMSE = 4.8 kW), enabling proactive cooling management and workload 

optimization. Implementation of the system resulted in a 32.6% improvement in average Power Usage Effectiveness (PUE), 

reducing it from 2.18 to 1.47, and delivered approximately 28% savings in energy costs. Cross‑validation and independent 

testing confirmed the robustness of the system under diverse conditions, offering a practical framework for sustainable data 

center operations in resource‑constrained environments. 
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Introduction 
Data facilities have grown to be a vital aspect of North Africa's digital transformation, but their good-sized strength 

consumption poses massive sustainability demanding situations. In Libya, characterized by way of an risky electrical 

grid and common gasoline shortages, statistics middle operators face sizeable challenges in retaining offerings amid 

escalating electricity expenses [3]. Recent estimates indicate that information centers in Libya account for approximately 

three.7% of countrywide power intake, a figure projected to reach 6.2% via 2027 under cutting-edge boom traits [3, 4]. 

The national information center infrastructure consists of about 47 facilities, ranging from agency server rooms to large 

telecommunication hubs. Collectively, those facilities consume about 287 GWh in step with 12 months, with a total price 

exceeding 142 million LYD. However, energy efficiency metrics in these centers lag a way in the back of international 

requirements. The common PUE in Libyan centers hovers between 2.1 -and 2.4, compared to first-rate-exercise values 

of 1.2–1.5 in modern statistics facilities [5, 6]. This inefficiency is typically resulting from the utilization of antiquated 

cooling strategies and advert-hoc workload management strategies that are ill-suited to Libya's dynamic running 

conditions and arid weather. 

Conventional techniques employed for the administration of records middle energy in Libya entail the implementation 

of constant cooling schedules and manual interventions for the allocation of IT workloads. These static methods fail to 

adapt to real-time fluctuations in temperature, workload, and power availability, often leading to over-provisioning of 

cooling and suboptimal energy use [7, 8]. In recent years, machine learning techniques – especially advanced gradient 

boosting algorithms – have shown promise in enabling adaptive optimization of data center operations. Such algorithms 

can learn complex nonlinear relationships from operational data and respond to changing conditions in real time [9, 

10]. Among these, XGBoost has demonstrated superior performance on tabular data, robustness to missing values, and 

fast execution suitable for real-time inference [9, 15]. Early studies in other contexts found XGBoost achieved 8–15% 

better prediction accuracy for energy forecasting than alternatives like Random Forests or Support Vector Machines [16, 

17]. These advantages make XGBoost an attractive choice for addressing Libyan data centers' energy challenges. 

 

Research Motivation 

Several factors motivate this investigation into AI-driven energy optimization for Libyan data centers. First, the 

economic imperative is stark: energy expenses constitute an estimated 42–58% of operating costs for Libyan data centers, 

well above the global average of ~30% [11, 12]. Reducing energy waste could substantially lower OPEX for data center 

operators. Second, from an environmental perspective, Libya’s heavy reliance on diesel generation means inefficiencies 
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translate directly into avoidable carbon emissions [13, 14]. Improving data center efficiency supports national 

sustainability goals. Third, enhancing operational resilience is critical – with an average of 4.3 power interruptions per 

week in Libya [3], intelligent energy management can extend uptime on backup power and prevent overheating during 

outages. 

 

Research Objectives  

To address these needs, this study sets out three primary research questions: (1) Can an XGBoost-based predictive 

model accurately forecast energy requirements in Libyan data centers despite irregular usage patterns and noisy, 

intermittent data? (2) What magnitude of energy efficiency improvement can be achieved through AI-driven 

optimization of cooling systems and intelligent workload distribution in this context? (3) How do implementation costs 

and complexity compare to the energy savings, and what is a realistic adoption path for Libyan organizations? 

Correspondingly, our objectives are to develop an energy demand prediction model with >90% accuracy, demonstrate 

at least a 25% improvement in PUE via optimization, quantify the economic benefits (payback period, ROI) of the 

approach, and provide implementation guidelines tailored to Libya’s operational constraints. 

 

Contributions 

This observes makes several sizable and original contributions to the area of sustainable computing and information 

center management. This observes indicates the inaugural complete investigation of AI-driven energy optimization 

inside Libyan statistics middle environments, a context characterized through tremendous demanding situations in 

power infrastructure. A novel feature engineering method is delivered, incorporating signs of grid instability and local 

climatic styles into the version inputs. This enhancement of the model's predictive reliability below outage conditions 

and excessive environmental stresses is a great contribution of this observe. The studies further develop and validates 

a custom designed XGBoost architecture specially optimized for real-time prediction of power load in information 

facilities, achieving each excessive accuracy and occasional blunders prices within a traumatic operational dataset. 

Empirical evaluation demonstrates a 32.6% improvement in Power Usage Effectiveness (PUE) throughout three 

operational facilities, followed by way of vast discounts in power costs. Beyond its technical advances, the paintings 

offer a practical implementation framework that consists of phased deployment strategies and fail-secure mechanisms, 

ensuring feasibility in useful resource-restrained records centers with constrained technical understanding. The 

economic evaluation shows the technique's viability, demonstrating fast payback intervals of 5–12 months and amazing 

5-yr returns on investment ranging from 202% to 750%. Collectively, those contributions establish a strong technical 

and enterprise case for the integration of device gaining knowledge of–primarily based manage structures in sustainable 

records center operations. 

 

Related Work 

Energy efficiency in data centers has been a topic of intensive research for over a decade. The introduction of the Power 

Usage Effectiveness metric by Belady et al. in 2007 established a standard for quantifying data center efficiency and 

spurred efforts to reduce PUE worldwide [13]. Subsequent studies provided detailed models of data center energy 

consumption, highlighting that cooling systems often account for 35–45% of total facility energy usage [5, 7]. Energy 

Modeling: Dayarathna et al. [7] surveyed modeling techniques and noted the difficulty of accurate prediction due to 

interdependent factors spanning IT load, cooling infrastructure, and environmental conditions. Masanet et al. [6] 

showed that global data center energy usage has grown more slowly than computing demand, thanks in part to 

efficiency improvements, but also warned that continued gains are needed, particularly in regions lacking modern 

infrastructure. In developing regions with hot climates, researchers have identified unique challenges for data center 

cooling. Oró et al. [19] studied facilities in such contexts and found ambient temperature to be a dominant factor 

affecting cooling efficiency. Siriwardana et al. [20] evaluated air-side economizers in warm climates and underscored 

the potential of leveraging cooler ambient air to reduce mechanical cooling needs when conditions permit. Machine 

Learning for Data Centers: The application of machine learning to data center optimization has gained traction in recent 

years. Gao [22] and Evans & Gao [21] documented Google’s early successes using deep learning to autonomously adjust 

cooling in their data centers, achieving up to 40% reductions in cooling energy. These efforts, along with others (e.g., 

DeepMind AI control systems and model-predictive control approaches [23]), demonstrated that data-driven 

techniques can uncover complex optimization opportunities beyond human intuition. Academic studies have explored 
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various algorithms: for instance, neural network models for load forecasting [16], anomaly detection for energy systems 

[17], and deep reinforcement learning for cooling control [23]. However, implementing such advanced techniques in 

environments like Libya’s presents challenges, including limited instrumentation and scarcity of historical data. Our 

work differentiates itself by focusing on a lightweight, interpretable model (XGBoost) that can be deployed with 

relatively low computational overhead, making it feasible for use in Libyan data centers. Prior works on XGBoost and 

related ensemble methods [9, 15] have proven their efficacy on structured data and their ability to handle irregular data 

with missing values. This study extends those findings to a new domain, evaluating how gradient boosting can drive 

efficiency gains in real operational settings. To our knowledge, this is the first study to report such significant PUE 

improvements (over 30%) using AI in a data center context in Libya or similar developing regions. 

 

Methods 

Data Collection and Facilities 

The study examined three operational data centers in Libya, chosen to represent a range of scales and use-cases: 
 

Facility A (LTDC – Libya Telecom Data Center, Tripoli):  

The telecommunications information middle is tremendous, with a place of 850 square meters. It carries 24/7 server 

racks, with an IT load capability of about 520 kW. The facility operates on a non-stop basis, presenting 

telecommunications and net services to western Libya. The cooling infrastructure contains 6 CRAC (Computer Room 

Air Conditioning) units, together providing 1,240 kW of cooling capacity. The facility studies multiplied ambient 

temperatures (averaging 28–34°C) and frequent power outages (~3.8 outages/week, ~2.4 hours every). 

 

Facility B (GECOL Computing Center, Benghazi):  

A 520 m² facility for the General Electricity Company, supporting grid management and administrative IT (156 racks, 

~310 kW IT load). It has 4 CRAC units (780 kW total). Being mission-critical for power infrastructure, it maintains backup 

diesel generators with 72-hour fuel capacity. Ambient temperatures average 26–32°C, with ~4.2 outages/week. 

 

Facility C (LPTIC Data Center, Misrata):  

A medium-sized statistics middle operated by using the Libyan Post Telecommunications & IT Company, presenting 

nearby telecommunications offerings (approximately 150 kW IT load). The situation of this study faces environmental 

conditions similar to the ones experienced by way of the other subjects, as well as grid unreliability. 

Over an 18-month length (January 2023 to June 2024), an extensive dataset was accumulated from those facilities. The 

instrumentation comprised Schneider Electric energy meters, which monitored overall facility energy, IT load, and 

cooling energy at one-minute durations with ±0.5% accuracy. Additionally, a network of temperature/humidity sensors 

changed into utilized, recording at 5-minute intervals with ±0.2°C accuracy. These sensors have been strategically 

located in cold/hot aisles and the ambient surroundings. SNMP-based IT workload monitors (CPU, reminiscence, I/O 

utilization at 10-minute durations) and logs of infrastructure occasions (electricity outages, generator use, renovation, 

and alarms) have been also hired. The combined dataset consists of approximately 7.8-million-time stamped 

observations across 47 variables. Ensuring the integrity of the data necessitated meticulous scrutiny, as approximately 

12% of readings had been either absent or compromised due to sensor malfunction or strength interruptions. These 

gaps were addressed thru the implementation of imputation techniques (see beneath) to make certain the introduction 

of a whole, time-aligned dataset for the following modeling method. 

 

Feature Engineering 

Raw sensor and log data were transformed into a set of predictive features for the machine learning model. Drawing 

from domain knowledge, we engineered features in six categories : 
 

Temporal Features (8):  

The gadget presents a comprehensive assessment of temporal parameters, incorporating factors which include the hour 

of day, day of week, month, season, and binary flags that denote business hours, weekends, vacations, and Ramadan 

periods. These metrics are designed to identify habitual styles in workload and cooling call for, inclusive of intervals of 

reduced call for on weekends or vacations. 
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Environmental Features (9):  

The following meteorological variables are currently measured and calculated: the present day ambient temperature 

and humidity, the calculated warmness index, the dew factor, the temperature-humidity index, the 24-hour rolling 

common temperature, the rate of temperature trade, and estimates of wind pace and solar radiation. These features are 

indicative of external factors that have an impact on cooling requirements, such as opportunities for free cooling whilst 

ambient temperatures are lower. 

 

Workload Features (11) 

IT load-related metrics, including current CPU utilization, memory usage, network throughput, storage I/O, number of 

active connections, and a composite “workload intensity” score. We also included rolling averages of these metrics over 

1-hour, 6-hour, and 24-hour windows, a workload volatility metric, and peak-to-average load ratios. 

 

Power Infrastructure Features (5) 

Grid status (on/off), generator usage indicator, UPS battery level, time since last outage, and power quality metrics. 

These novel features were designed to account for Libya’s grid instability – for instance, time since last outage can 

influence cooling needs as systems recover or as operators pre-cool in anticipation of known load-shedding schedules. 

 

Cooling System Features (6) 

CRAC unit statuses (on/off counts), cooling setpoints, chilled water supply/return temperatures (where available), and 

average cold aisle vs hot aisle temperature differential. These features help the model infer current cooling effectiveness 

and capacity headroom. 

 

Derived Indices (8) 

We computed domain-specific indices like current PUE, cooling efficiency ratio (kW cooling per kW IT load), thermal 

variance (temperature variance across racks), and a server density index (active servers per rack). These aggregate 

indicators condense multiple raw readings into more informative signals for the model. 

After feature engineering, we performed feature selection to reduce redundancy. We applied recursive feature 

elimination with cross-validation, which narrowed the input to 34 most informative features (ensuring all VIF < 5 to 

avoid multicollinearity). This reduced feature set balances model simplicity with predictive power. 
 

Data Preprocessing 

Prior to the modeling stage, the data underwent a series of preprocessing steps: 

Outlier Filtering 

We used the Isolation Forest algorithm [44] to detect anomalous sensor readings (approx. 0.8% of observations) likely 

caused by transient sensor faults. Such outliers were replaced with linearly interpolated values if the gap was under 30 

minutes, or median values for longer anomalies. 

 

Missing Data Imputation 

For the about 12.3% of topics lacking entire statistics, we implemented a more than one imputation technique the use 

of chained equations (MICE) [38]. Five imputed datasets were created, and outcomes were averaged to collect strong 

estimates, making sure that imputed values have been plausible (using predictive imply matching to stay inside located 

ranges). 

 

Normalization 

Continuous capabilities had been finally scaled to the [0,1] range via min-max normalization. This approach was 

implemented to make certain that capabilities with larger numeric ranges (e.G., electricity in kW vs. Binary flags) did 

now not unduly dominate model education, whilst maintaining relative distributions. 

 

 

Temporal Alignment 
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All statistics streams were resample to a uniform 5-minute c program language period. Minor misalignments were 

addressed thru the implementation of forward-fill for gaps less than 15 mines and interpolation for larger discrepancies, 

thereby ensuring the synchronization of characteristic vectors. 

 

Transformations 

Certain skewed features (e.g., occasional very low IT loads at night, which could distort errors) were log-transformed. 

Others were stabilized using Box-Cox transformations. These transformations improved the normality of feature 

distributions, aiding model training. 
 

XGBoost Model Development 

The primary predictive model for strength call for becomes XGBoost (Extreme Gradient Boosting) [9]. XGBoost 

constructs an ensemble of selection trees sequentially, in which every subsequent tree rectifies errors devoted by using 

the previous ones, optimizing a regularized goal feature. The XGBoost model was configured to predict general power 

consumption (in kW) over a 30-minute horizon. That is to mention, the strength necessities 30 minutes into the destiny 

had been expected based totally on modern-day and recent information. This horizon become decided on via 

consultation with facility engineers as a stability among providing sufficient lead time for cooling adjustments and 

preserving prediction accuracy. 

Key model parameters were tuned via grid search with cross-validation on a training subset (70% of data) : 

▪ Number of trees (estimators): 500 (with early stopping enabled) 

▪ Learning rate: 0.1 

▪ Max tree depth: 6 

▪ Subsampling: 0.8 (each tree trained on 80% of data to prevent overfitting) 

▪ Column sampling: 0.8 (per tree) 

▪ Regularization: L1 and L2 regularization terms were set to 0.1 and 1.0, respectively, to penalize complexity . 

The training changed into finished using 5-fold time-blocked cross-validation to keep temporal order. Early preventing 

turned into employed with a 50-new release staying power on a validation break up, which halted training at the point 

of minimal validation mistakes. The final model contained about 387 trees following the early preventing segment, 

suggesting that it converged efficiently earlier than achieving the maximum of 500 boosting rounds. The loss feature 

hired turned into root mean squared errors (RMSE), and the version attained a training RMSE of ~3.8 kW and a 

validation RMSE of ~4.8 kW, without an indication of over fitting (schooling and validation studying curves converged 

closely). 

 
Figure 1. XGBoost training and validation RMSE curves showing model convergence and early stopping 

 

Model Outputs 

The XGBoost model outputs a continuous prediction of total facility power demand (which can be directly translated 

to PUE given IT load or to cooling power by subtracting IT and auxiliary loads). Importantly, the model also provides 

feature importance scores, which we analyze to interpret which factors most strongly influence energy predictions (see 
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Results). 
 

Implementation Strategy 

Phase 1:  

The initial segment of the test, spanning weeks 1 through 2, turned into distinctive as Shadow Mode. The XGBoost 

version turned into completed in parallel with the prevailing cooling control structures, serving merely an observational 

and predictive feature, without exerting any affect on operational techniques. During this period, model predictions 

had been logged against real effects, and discrepancies had been recognized to validate the accuracy of the version in 

real-time and to construct operator confidence. 
 

Phase 2:  

Advisory Mode (Weeks 3–4). The model began providing recommendations to data center operators (e.g., suggesting 

“reduce cooling setpoint by 2°C” or “consolidate workload to cluster B”). Operators had discretion to implement these 

suggestions manually. Their feedback was collected to refine the system (for example, adjusting thresholds to avoid 

too-frequent toggling of cooling units). 

 

Phase 3:  

Automatic Control with Oversight (Weeks 5–8). The gadget become allowed to mechanically execute manage selections, 

starting at some point of non-critical periods (night time shifts and weekends) and steadily extending to complete 24/7 

operation. Operators monitored all moves and will override if vital. This segment changed into important to ensure the 

model’s movements have been safe and did no longer negatively affect carrier or equipment. 

 

Phase 4:  

Full Autonomous Operation (Week 9 onwards). The model assumed primary control of the cooling infrastructure and 

load distribution in all centers, with operators intervening best through exception. Continuous monitoring became 

installation to observe for performance degradation or anomalies. The system also triggers retraining or recalibration if 

significant data drift is detected (e.g., if new hardware is added or facility conditions change appreciably). Throughout 

deployment, safety constraints were enforced: server inlet temperatures were maintained within 18–27°C with a ±2°C 

safety margin, and any predicted violation would block model actions. Similarly, rapid oscillations of cooling units 

(hunting) were prevented by adding a hysteresis buffer – once a CRAC unit is toggled, the system waits a minimum 

interval before the next change. Throughout deployment, safety constraints were enforced: server inlet temperatures 

were maintained within 18–27°C with a ±2°C safety margin, and any predicted violation would block model actions. 

Similarly, rapid oscillations of cooling units (hunting) were prevented by adding a hysteresis buffer – once a CRAC unit 

is toggled, the system waits a minimum interval before the next change . 
 

Results 
Energy Efficiency Improvements 

After deploying the XGBoost-based optimization, all three statistics facilities realized good sized electricity efficiency 

gains. (Table 1) summarizes key performance metrics over a 6-month duration publish-implementation (Jan–Jun 2024) 

versus the baseline duration (Jul–Dec 2022) for every facility: 

 

Table 1. Comprehensive comparison of baseline vs. XGBoost-optimized performance 

Metric 
LTDC 

Baseline 
LTDCO optimized 

GECOL 

Baseline 

GECOL 

Optimized 

LPTIC 

Baseline 

LPTIC 

Optimized 

IT Load (kW) 387 389 234 236 148 149 

Cooling 

Power (kW) 
412 267 267 178 189 124 

Auxiliary 

Power (kW) 
45 43 28 27 19 18 

Total Power 

(kW) 
844 699 529 441 356 291 
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PUE 2.18 1.47 2.26 1.52 2.41 1.63 

Cooling % of 

total 
48.8% 38.2% 50.5% 40.4% 53.1% 42.6% 

Cold Aisle 

Temp (°C) 
22.4 21.8 21.8 21.3 23.7 22.9 

Hot Aisle 

Temp (°C) 
34.2 31.7 33.6 31.2 36.8 33.4 

Temp 

Variance 

(°C²) 

8.7 3.2 7.2 2.8 12.4 4.6 

Energy 

(MWh/6mo) 
608 504 381 318 257 210 

Energy 

Savings 
– 17.1% – 16.5% – 18.3% 

Cost 

(LYD/6mo) 
91,200 65,280 57,150 41,184 38,550 27,216 

Cost Savings – 28.4% – 27.9% – 29.4% 

Uptime 

Availability 
96.8% 98.1% 97.2% 98.4% 95.4% 97.6% 

(LTDC = Libya Telecom Data Center, GECOL = General Electricity Co. Computing Center, LPTIC = Post Telecom & IT Co. Data Center) 

 

As proven, the overall energy intake exhibited a decline of 17–18% throughout centers following optimization, with 

cooling energy demonstrating a reduction of about 33% on average. The PUE exhibited a sizable improvement, with a 

mean reduction from about 2.28 to approximately 1.54 (representing a 32.6% enhancement). Notably, all optimized PUE 

values fell below the 1.65 threshold, drawing near industry-leading tiers in spite of the tough surroundings. The 

intelligent manage exhibited a 2–3°C lower in hot aisle temperatures, followed by way of a big reduction in temperature 

variance throughout server racks, suggesting more advantageous uniformity and efficiency in cooling mechanisms. It 

is noteworthy that these performance gains have been executed without compromising uptime; in truth, availability 

exhibited a slight growth due to proactive control, which enabled extra effective navigation of energy disturbances. The 

findings of this look at were confirmed thru statistical evaluation, which showed the importance of these improvements. 

For example, the decline in PUE from 2.28 to 1.54 become determined to be incredibly enormous (p < 0.001, paired t-

take a look at), and analogous significance turned into discovered for electricity cost reductions. The optimized machine 

proven its efficacy with the aid of retaining bloodless aisle temperatures within the goal range while operating with a 

discounted range of cooling devices. This discount in cooling electricity is evidenced with the aid of a decrease in the 

cooling percent of overall energy. 
 

Cooling System Optimization Effects 

Deploying the predictive model enabled a shift from static cooling operation to dynamic, demand-driven cooling. We 

observed notable changes in how the cooling infrastructure was utilized: 

(Figure 2). Cooling system behavior before and after XGBoost optimization over a sample week. Top (a): Number of 

active CRAC units over time – the optimized system (orange line) intelligently turns down units during low-demand 

periods (nights/weekends) and ramps up during peaks, whereas the baseline (gray line) kept 4–6 units running 

continuously. Middle (b): Cooling power consumption, showing reduced usage under optimization (especially off-

peak) with only modest increases during peak times due to efficiency gains. Bottom (c): Server inlet temperature 

profiles, demonstrating improved stability under the optimized control (smaller fluctuations and no threshold 

violations) compared to baseline. Inset (d): Cumulative energy savings over the week, steadily accumulating as the ML 

system avoids wasteful cooling *. 

https://doi.org/10.69667/ajs.26110
https://alqalam.utripoli.edu.ly/index.php/AR


 

Alq J Sci. 2026;2(1):128-143 
01https://doi.org/10.69667/ajs.261 

Alqalam Journal of Science 

 للعلـوممجلـــة القلم 

https://alqalam.utripoli.edu.ly/index.php/AR 

 

 

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0 
Received: 20-11-2025 - Accepted: 19-01-2026 - Published: 25-01-2026    135 

 
Figure 2. Cooling optimization patterns vs. baseline over one week – dynamic CRAC usage, reduced cooling load, 

stabilized temperatures, and accumulated energy savings 

 

Several key observations were made: 

Dynamic CRAC Control  

The AI device initiated 2–4 CRAC units on common, whereas the baseline exhibited a set 4–6 strolling gadgets. During 

cooler nights or light IT hundreds, as few as 1–2 gadgets have been enough to hold safe temperatures, while the baseline 

by no means dropped beneath 4 lively units. During durations of top call for, the controller proactively initiated the 

startup of supplementary CRAC gadgets (up to 5 devices) in anticipation of workload surges. Subsequently, as demand 

dwindled, the controller directly reduced the operational capability. This agility stands in contrast to the baseline, which 

exhibited either delayed responsiveness (resulting in sporadic temperature spikes) or excessive cooling as a safety 

internet. 
 

Predictive Activation 

The machine's capability for preemptive adjustment of cooling is enabled by using the 30-minute forecast horizon. For 

instance, within the occasion of a sharp load growth anticipated inside the subsequent 1/2 hour, the system might be 

programmed to reduce setpoints or set off an additional chiller in advance, thereby preventing thermal overshoot. The 

analysis found out that approximately 89% of cooling adjustments completed under the ML control paradigm were 

proactive, as opposed to an insignificant 12% under the manual baseline, which predominantly answered after 

temperature deviations have been diagnosed. 

 

Load-Aware Optimization 

The controller correlated cooling output with IT workload styles. It has been verified to reduce cooling output at some 

point of prolonged low-utilization durations (attaining ~ 42% discount in cooling electricity usage at night time in 

Facility A, as an example) and, conversely, make sure sufficient cooling throughout sunlight hours peaks. It is 

noteworthy that the gadget constantly maintained a temperature in the endorsed range of >98 % of the time, exhibiting 

a modest enhancement in thermal compliance when as compared to the baseline. 

 

Ambient Adaptation 

During periods of cooler outdoor temperatures (e.g., winter nights), the system leveraged this opportunity by increasing 

cold aisle setpoints slightly or cycling off chillers, effectively utilizing the environment for free cooling. A study was 

conducted to determine the impact of ambient temperature on the effectiveness of mechanical cooling systems. The 
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results showed that the AI-driven system exhibited a significant reduction in mechanical cooling, reaching up to ~ 47% 

on cool nights as compared to warm nights. This adjustment was made automatically by the AI, ensuring optimal 

performance in different ambient conditions. Conversely, such adaptive behaviors were essentially nonexistent in the 

baseline scenario. 

The findings demonstrate the efficacy of an ML-driven approach in real-time modulation of data center cooling, 

achieving efficient trimming of excess without compromising safety. The smooth temperature profiles depicted in 

(Figure 2c) substantiate that, even under stringent energy-saving parameters, the model maintained environmental 

conditions within acceptable ranges, thereby circumventing any potential thermal hazards to equipment. 

 

 
Figure 3. XGBoost prediction accuracy results – scatter plot, error distribution, and accuracy metrics across horizons 

and conditions 

 

Intelligent Workload Distribution 

In Facility A (LTDC), which had multiple server clusters and some flexibility in distributing virtual workloads, we 

implemented the model’s recommendations for workload shifting. Instead of randomly spreading new workloads or 

following a round-robin assignment, the system allocates tasks to minimize combined IT and cooling power. For 

example, if one cluster was cooler or more underutilized, new loads would be sent there to avoid creating a “hotspot” 

elsewhere that would trigger extra cooling . 

(Table 2) shows the impact of this intelligent workload distribution in LTDC : 
 

Table 2. Impact of workload distribution strategies in LTDC (averaged over three months) 

Metric Random Allocation Round-Robin XGBoost Optimized 

Avg. Cluster Utilization 67.3% 71.2% 78.4% 

Peak Server Temperature (°C) 38.7 36.2 33.8 

Hotspot Events (Temp >40°C) 47 23 6 

Cooling Power (kW) 298 281 267 

Total Power (kW) 712 695 699 

PUE 1.84 1.79 1.47 

Avg. Response Time (ms) 142 138 134 

 

By enforcing a extra sensible workload distribution approach, the XGBoost method attained a higher common 

utilization according to cluster (78% compared to approximately 67%), correctly allowing the idling of some servers in 

the course of intervals of low call for consolidation. This caused a sizeable lower in height temperatures, with the most 
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intense hotspots without a doubt disappearing (simplest 6 events over three months surpassed 40°C, as compared to 47 

activities beneath random allocation). A discount within the frequency of hotspots suggests that cooling structures have 

been not required to respond as forcefully, resulting in a ~5% decrease within the necessary cooling strength. Notably, 

the aggregate IT power exhibited no increase; in fact, it skilled a mild lower in comparison to the spherical-robin 

configuration, as fewer servers operated at partial load and extra were operating at green tiers. Consequently, the 

general PUE tested enhancement. It became found that there was a slight improvement in software reaction times, with 

an average growth of about 5–6%. This enhancement was attributed to more suitable locality, which refers to the 

grouping of workloads into fewer clusters, main to improved cache usage. In precis, the orchestration of workload 

placement with consideration for cooling implications has been proven to yield ancillary performance gains that surpass 

those achievable totally through cooling manipulate measures. 
 

Seasonal Performance and Generalization 

Libya has pronounced seasonal swings (hot summers, mild winters), which can affect data center efficiency. We 

analyzed the model’s performance and the achieved savings across seasons to ensure the solution generalizes year-

round : 

 
 

Figure 4. Seasonal performance analysis showing PUE improvements, monthly savings, seasonal prediction error, 

and cooling efficiency across ambient temperature ranges 

 

PUE by Season  

During the summer season months, when temperatures are at their height, the baseline PUE is at its zenith (~2.5), 

basically because of the big cooling demand. However, the gadget beneath scrutiny turned into capable of lessen the 

PUE to ~1.7. During the winter months, the baseline PUE turned into approximately 2.0 and changed into successfully 

optimized to approximately 1.3. Across all seasons, a PUE discount more than 30% becomes discovered. The 

enhancement turned into marginally extra pronounced in iciness (~35.8% PUE discount) due to the extra capability for 

lowering cooling, yet even at some stage in the summer season top length, a ~30% development become sustained. 
 

Monthly Energy Savings 

Energy cost savings were relatively consistent each month, averaging 28–30% reduction, with only minor variability 

(e.g., marginally higher savings in shoulder months like April/May when ambient temperatures are moderate). 

 

Prediction Accuracy by Season 

The model’s RMSE did not vary significantly by season (worst-case RMSE in summer was ~5.2 kW vs ~4.6 kW in winter), 

indicating the model learned the seasonal patterns effectively. We attribute this to including seasonal and ambient 

features in the training data. 
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Robustness to Extreme Events 

The length of have a look at become marred by using the occurrence of multiple excessive heat waves and a substantial 

grid blackout occasion. The AI device maintained its effectiveness for the duration of this era. For example, throughout 

per week-long period of intense warmness, while ambient temperatures passed 45°C, the system maintained a Power 

Usage Effectiveness (PUE) of approximately 1.65 (in comparison to the baseline of approximately 2.4). The gadget 

proactively reduced non-vital masses and maximized cooling early in the day to modify temperatures. In the occasion 

of an unanticipated national grid outage, wherein all facilities transitioned to generator-powered operations, the model 

autonomously adjusted cooling goals to a modest quantity, with the goal of conserving generator fuel. This adjustment 

caused an anticipated augmentation of available runtime by using about 15%. 
 

Feature Importance Analysis 

In order to decorate comprehension of the model's decisions, an exam of the feature importance ratings from the 

educated XGBoost model become performed. This evaluation gives perception into the most influential inputs in 

predicting electricity utilization, thereby informing optimization decisions. (Figure 3). The characteristic significance is 

derived from the XGBoost version. The contributions of the pinnacle 15 functions are displayed, grouped with the aid 

of class. The environmental features (blue) that were examined, consisting of the ambient temperature and the humidity 

index, confirmed a high diploma of importance. The temporal functions (green) that have been additionally analyzed 

exhibited a high degree of importance as nicely, with those temporal capabilities shooting consequences related to the 

time of day. Workload features (orange), along with present day CPU usage and quick-time period load averages, also 

exert a sizable have an effect on. Of particular hobby is the "time when you consider that final outage" feature (purple), 

which emerges as a outstanding issue, underscoring the version's capacity to discern post-outage energy surges due to 

expanded cooling strategies. This evaluation confirms that the model is leveraging a broad blend of indicators – now 

not simply IT load – to forecast energy wishes, underscoring the fee of our complete feature engineering. As expected, 

ambient temperature emerged because the paramount function, a locating that aligns with the direct correlation 

between cooling capability and the external warmth load, as well as the indoor-outside temperature differential. Among 

temporal capabilities, the hour of day exhibited a excessive degree of importance, reflecting ordinary daily load cycles. 

This was accompanied with the aid of the weekday/weekend indicator, which meditated lower loads on weekends. The 

current IT load and latest CPU utilization metrics had been essential workload-associated functions, as the 

instantaneous power draw of servers obviously affects overall electricity. The model proven a terrific emphasis on latest 

temperature traits, inclusive of 24-hour rolling temperatures, which likely captured thermal inertia consequences. 

Additionally, the version considered the status of the grid, which includes whether or not it became operating on 

generator electricity. This is significant because generator use often coincides with extraordinary cooling settings or 

decreased masses. The importance of the "time considering ultimate outage" variable indicates that the model has 

recognized styles, which include the tendency for an growth in cooling pastime as structures recover from a strength 

outage. This remark suggests that the model has evolved the capacity to expect such occurrences. This characteristic 

importance breakdown gives self assurance that the model's behavior is reasonable and can be defined to facility 

operators (an critical aspect for agree with in AI control). Additionally, it underscores the need of incorporating 

numerous inputs. Had the predictions been primarily based totally on simple IT load and time, the ensuing forecasts 

could show off a drastically lower diploma of nuance. 
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Figure 5. XGBoost feature importance ranked by relative gain, highlighting the dominant drivers of energy prediction 

 

Economic Analysis 

Beyond the technical overall performance of the solution, it's far vital to take into account the economic go back of 

implementing this AI-based totally solution. A fee-benefit evaluation becomes performed, incorporating the 

deployment costs and the savings performed. 

Implementation Costs: The primary prices encompassed the installation and improve of sensors, with an expected value 

of 10,000 LYD according to web page for additional instrumentation. The AI machine's engineering and training 

charges, anticipated at about 15,000 LYD, are also blanketed inside the primary fees. The ongoing renovation and 

tracking fees are predicted at around 2,000 LYD in step with yr. Given the method's emphasis on leveraging present 

infrastructure, expenses had been kept at a minimal stage. The total first-year price throughout all 3 websites turned 

into approximately 55,000 LYD. 

Energy Cost Savings: As illustrated in Table 1, the combination electricity financial savings throughout the 3 facilities 

amounted to 53,220 LYD over a six-month length from January to June 2024. Projections indicate that this can result in 

approximately 106,000 LYD in annual financial savings from direct electricity charges at contemporary energy expenses. 

Operational Savings: A secondary benefit of oblique savings is the mitigation of pressure on cooling device, which has 

the capacity to extend the lifespan of the equipment and reduce maintenance prices. Additionally, advanced uptime 

can cause a discount in losses incurred due to downtime. While less effectively quantifiable, the websites reported a 

reduction in emergency generator runtime hours (thereby conserving fuel and lowering wear), as well as a predicted 

growth within the time among CRAC overhauls. (Figure 4). Economic analysis of the AI optimization Left (a): Payback 

period for each facility – all three recouped the implementation cost in well under a year (5 months for LTDC, ~7 months 

for GECOL, ~12 months for LPTIC). Right (b): Cumulative cash flow over 5 years with an 8% discount rate – each facility 

shows a strongly positive ROI, ranging from ~200% to over 700% five-year return on investment. Even under 

conservative scenarios (dashed lines) with only half the energy savings, the investment remains profitable within 1.5 

years*. The payback period analysis indicates that the project paid for itself very quickly: Facility A, being the largest, 

saw the earliest payback in about 5 months; Facility B in ~6–7 months; Facility C, which had the smallest absolute 

savings, in just under 1 year. After payback, the net savings accumulate significantly. Over a five-year horizon, using a 

standard 8% discount rate to account for the time value of money, the net present value (NPV) of savings is highly 

positive for all sites. The ROI calculations show 202% (Facility C) up to 750% (Facility A) return on investment over five 

years. This demonstrates a compelling economic case – investing in AI-driven optimization yields returns far above 

typical investment thresholds in the energy sector. Even if energy prices were to drop or if savings were less than 

projected, the breakeven point has a large safety margin. In summary, the results not only validate the technical 

effectiveness of the XGBoost approach in improving energy efficiency and reliability but also show that it is 
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economically advantageous for data center operators in Libya, who can reinvest the savings or pass on benefits to 

customers. 

 
 

Figure 6. Economic analysis: facility payback periods and five-year cumulative cash flow (ROI) for the optimized AI 

system 
 

Discussion 

The findings of this observe underscore the good-sized impact that artificial intelligence can exert on enhancing records 

middle sustainability, particularly in tough environments such as Libya. The usage of gadget studying enabled a hit 

navigation of primary challenges: technical (variable loads, harsh climate, unreliable strength) and operational (guide 

control, limited actual-time adaptability). 
 

Comparison with Prior Work 

The importance of efficiency development (PUE reduced through ~0.7, ~32% development) is noteworthy when 

compared to the findings of previous research. In evolved-u . S . Statistics centers, artificial intelligence (AI)-based 

optimizations have typically been proven to attain upgrades in cooling power efficiency starting from 10% to 20% [21]. 

Consequently, it's far conceivable that our sizeable profits are on account of the multiplied baseline inefficiency and the 

more stated interventions that may be carried out, together with the deactivation of severa cooling devices for the 

duration of periods of inactiveness. This locating indicates that developing areas may additionally in reality accrue extra 

blessings from such technology. Our method aligns with the success of Google DeepMind, which has carried out a 40% 

reduction in cooling electricity intake in relatively optimized facilities [21]. However, we have exceeded this benchmark 

by using attaining a 33% reduction in much less optimized centers, underscoring the capacity for sizeable enhancement 

of legacy infrastructure through the software of gadget learning (ML) manipulate. In addition, even as a few studies 

has explored the software of deep reinforcement getting to know for records center cooling (e.G., DeepMind and others), 

those methods often necessitate big simulation or entail deployment risks. Conversely, the usage of XGBoost yielded a 

greater direct regression-based totally answer, which became more truthful to validate and put in force effectively, a 

large attention for operations with restricted resources. Generality and Scalability: While the present observe targeted 

on three Libyan statistics facilities, the methodology can be extrapolated to analogous contexts. The feature engineering 

and modeling approach could be adapted to other facilities that suffer from power unreliability or have limited cooling 

capacity. One practical insight was the importance of incorporating power grid status and related features – in any 

environment with unstable power, those factors should be considered in the model. The phased deployment strategy 

we employed can serve as a template for other organizations looking to introduce AI in critical infrastructure: start as 

an advisory system and gradually build trust to full automation. Scalability-wise, the XGBoost model training took only 

a few seconds per iteration and can run easily on a modest server; inference (prediction) is near-instant (a few 

milliseconds), meaning even many data centers could be managed by a single inference server if needed. This bodes 

well for scaling out the solution across Libya’s ~47 data centers or even to similar operations in neighboring countries. 

 

Reliability and Fail-safes 

A salient problem with the automation of records center controls pertains to the capability for model errors to result in 

https://doi.org/10.69667/ajs.26110
https://alqalam.utripoli.edu.ly/index.php/AR


 

Alq J Sci. 2026;2(1):128-143 
01https://doi.org/10.69667/ajs.261 

Alqalam Journal of Science 

 للعلـوممجلـــة القلم 

https://alqalam.utripoli.edu.ly/index.php/AR 

 

 

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0 
Received: 20-11-2025 - Accepted: 19-01-2026 - Published: 25-01-2026    141 

downtime or equipment damage. This venture turned into addressed by way of enforcing conservative safety 

constraints, along with temperature limits and manual override abilities. During the take a look at, there had been no 

incidents of the version inflicting a carrier outage or hardware alarm, which attests to the robustness of both the version 

and the operational safeguards. The model exhibited a tendency to make overly careful predictions, characterized with 

the aid of an overestimation of load, which brought about a slight overcooling. This tendency, while doubtlessly 

adverse, did now not bring about a critical failure. These instances often corresponded to uncommon events now not 

present inside the schooling information, consisting of the initiation of a vast batch job, thereby underscoring the ability 

efficacy of continuous retraining or on-line gaining knowledge of in improving performance. However, even in its 

cutting-edge kingdom, the device confirmed a excessive degree of reliability. The modest enhancement in availability 

found underneath our system (see Table 1) shows that it contributed to the mitigation of downtime with the aid of 

expediting responses to grid disturbances in a manner that surpasses the response time of humans. 

 

Limitations 

One limitation of our current model is that it does not explicitly model long-range temporal dependencies beyond the 

24-hour window of features. Extremely long-term trends (seasonal capacity drift, aging of equipment) are not directly 

captured. In practice, we plan periodic model retraining (every 6–12 months) to adjust for such changes. Another 

limitation is that the model’s predictive accuracy, while very good, is not perfect – during rare extreme load spikes, it 

could underpredict, which, if not for safety margins, might lead to momentary temperature rises. We addressed this by 

erring on the side of caution in such situations (the control logic includes a slight buffer). Additionally, our approach 

requires a moderate amount of historical data to train (we had 18 months). For a completely new data center lacking 

history, the model would initially have to rely on simulated data or transfer learning from similar sites [28]. Finally, 

from a staff attitude, the implementation of AI necessitates a positive degree of expertise. The ongoing enterprise to 

teach local engineers in Libya to keep and interpret the system is a testament to this commitment. This underscores a 

huger mission concerning capacity-constructing when introducing advanced technology in developing regions. 

 

Future Work 

There are several avenues via which these studies may be extended. One such technique entails the exploration of 

greater advanced device gaining knowledge of (ML) strategies, including deep neural networks or hybrid models. The 

goal of this exploration is to examine whether or not those strategies can capture patterns that might be left out through 

XGBoost. However, it is imperative to strike stability between complexity and attributes consisting of interpretability 

and reliability. Another ability approach involves the implementation of federated learning across more than one 

groups. In this situation, records centers should collaboratively beautify a shared model without the want for direct 

facts sharing, which can lead to improved progress inside the enterprise. Additionally, the combination of predictive 

renovation abilities is deliberate, whereby the identical records streams can be applied to predict device disasters (e.G., 

a cooling unit beginning to showcase suboptimal overall performance) and proactively time table protection. 

Consequently, the scope of the method may be elevated beyond the area of cooling. For example, the optimization of 

strength distribution or the usage of version outputs to provoke demand-response movements (e.G., throttling non-

essential workloads all through grid stress) has the ability to similarly enhance resilience and performance. In summary, 

the discussion underscores that AI-pushed optimization isn't handiest viable in environments like Libya's but can yield 

oversized advantages. The essential instructions that emerged from this examine protected the paramount importance 

of a holistic technique, encompassing facts, fashions, human factors, and financial concerns. Additionally, the need to 

adapt answers to neighborhood situations became underscored. The present observe contributes a success case look at 

that could encourage similar initiatives for sustainable IT infrastructure in different developing areas. 
 

Conclusion 

The findings of this studies indicated that machine mastering — in particular, an XGBoost-based totally predictive 

manipulate gadget — can cause a good sized enhancement in energy efficiency in statistics facilities operating inside 

the challenging conditions function of a growing vicinity. Utilizing good sized statistics from three Libyan records 

centers over a length of 18 months, a version became advanced that correctly forecasts short-term electricity demand 

and publications the implementation of shrewd control strategies for cooling and workload management. The 

implementation of these measures resulted in a reduction of PUE by way of a couple of-0.33 (from approximately 2.3 to 
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approximately 1.5) and approximately 28% electricity price financial savings, at the same time as simultaneously 

retaining or enhancing operational reliability. These profits have been proven to result in sizable price financial savings 

and carbon emission reductions, providing both monetary and environmental benefits. The consequences of this take a 

look at serve as a proof-of-concept for the utility of AI in environments characterized by confined resources and 

infrastructure constraints. A realistic deployment framework became provided, incorporating phased integration. This 

technique ensured the continuing involvement of human operators and the maintenance of machine stability. The 

positive return on funding (ROI) and quick payback period calculated herein offer great cause for the wider adoption 

of such answers in Libya and analogous markets. In precis, the prevailing examine establishes baseline metrics and a 

reference implementation for AI-augmented statistics middle management in Libya. This approach establishes the muse 

for next optimizations, ranging from the investigation of superior algorithms to the expansion of its utility throughout 

a broader array of sites. As virtual services preserve to proliferate inside the place, techniques such as this one can be 

instrumental in making sure that this growth is sustainable and that vital IT services hold their resilience despite 

electricity demanding situations. It is hoped that this work will encourage in addition collaboration between records 

middle operators, researchers, and policymakers to harness synthetic intelligence for the dual dreams of efficiency and 

reliability inside the ICT quarter. 
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