
 

Alq J Sci. 2026;2(1):84-94 
7https://doi.org/10.69667/ajs.2610 

Alqalam Journal of Science 

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR 

 

  

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0 

Received: 30-10-2025 - Accepted: 29-12-2025 - Published: 05-01-2026    84 

Machine Learning-Based Adaptive Step Size Control for Numerical Solution of 

Ordinary Differential Equations 

Naima Saad Shamsi   

Department of Mathematics, Faculty of Science, Sabha University, Sebha  

Corresponding Email. nai.saadshamsi@sebhau.edu.ly 

 

Abstract 

Adaptive step-size control plays a key role in the accurate and efficient numerical solution of ordinary differential 

equations (ODEs). This work introduces a machine learning–enhanced Runge–Kutta method (ML-RK45) that employs 

a learned predictive policy for step-size selection, moving beyond conventional error-based adaptive strategies. The 

proposed approach is evaluated against fixed-step fourth-order Runge–Kutta (RK4) and the classical adaptive Runge–

Kutta 4(5) method (RK45) using four benchmark problems: exponential decay, harmonic oscillation, nonlinear 

autonomous systems, and stiff linear equations. Results show that ML-RK45 significantly reduces the number of solver 

steps and function evaluations while maintaining solution accuracy within prescribed tolerances, albeit with increased 

computational overhead in CPU time  due to neural-network inference. In stiff and oscillatory problems, step-count 

reductions lead to improved algorithmic efficiency and enhanced numerical stability. Iteration counts decrease by up 

to 65% for exponential decay and 89% for stiff systems, while oscillatory problems exhibit substantially reduced phase 

and amplitude errors. Overall, the results demonstrate the potential of predictive machine learning strategies to 

enhance adaptive ODE solvers, particularly in applications where stability and step efficiency are critical. 

Keywords. Adaptive Step Size, Runge–kutta, Machine Learning, Differential Equation. 

 

Introduction 
The numerical solution of ordinary differential equations (ODEs) plays a central role in scientific computing, with 

applications spanning physics, engineering, biology, and finance [1,2]. Classical numerical schemes such as the fourth-

order Runge–Kutta method (RK4) and the adaptive Runge–Kutta 4(5) method (RK45) are widely employed due to their 

balance between accuracy and computational efficiency [3]. RK45 provides adaptive step-size control by comparing 

fourth- and fifth-order solutions, enabling reliable integration across problems exhibiting diverse dynamical behaviors 

[4]. 

Despite its effectiveness, the conventional RK45 step-size controller relies on heuristic error-per-step formulas, which 

may be overly conservative for smooth problems or inefficient for rapidly varying, stiff, or oscillatory systems [5]. These 

limitations motivate the exploration of data-driven alternatives that can exploit patterns in the local numerical behavior 

of ODE solvers. 

This study investigates whether a machine learning–based controller can enhance the adaptive step-size selection 

mechanism in the classical RK45 method. We propose ML-RK45, a machine learning-enhanced adaptive solver, and 

compare it against two baseline solvers: (1) fixed-step RK4 with constant step size, and (2) classical adaptive RK45 with 

error-based step-size control [2]. All comparisons are performed under matched tolerance settings and hardware 

configurations to ensure fair evaluation. 

Specifically, we examine whether ML-RK45 can reduce the total number of integration steps while maintaining or 

improving global accuracy compared to these baselines. The evaluation covers four canonical ODE problems 

representing distinct dynamical regimes: exponential decay (smooth/stiff), harmonic oscillation (oscillatory), nonlinear 

autonomous dynamics, and stiff linear systems [6]. Furthermore, we analyze whether the predictive step-size strategy 

yields smoother and more stable step-size sequences, particularly in stiff and oscillatory regimes, thereby improving 

the propagation of numerical errors. An additional objective is to assess the computational trade-off between the 

reduction in step count and the overhead introduced by neural network inference. 

Through this investigation, the present work aims to provide a comprehensive assessment of the effectiveness, stability, 

efficiency, and generalization potential of machine learning–enhanced adaptive step-size control for the numerical 

solution of ordinary differential equations within the classical RK45 framework. Such improvements are particularly 

relevant for large-scale scientific and engineering simulations, where millions of time steps may be required, and even 

moderate efficiency gains can lead to substantial reductions in computational cost. 
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Methodology 

Problem Definition 

We consider ordinary differential equations (ODEs) of the form: 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, 𝑡 ∈ [𝑡0, 𝑇] 

where 𝑦(𝑡)is the exact solution, and 𝑓(𝑡, 𝑦)is a known derivative function. The objective is to compute a numerical 

approximation 𝑦̂(𝑡)that maintains high accuracy while minimizing computational effort [7]. 

 

Numerical Methods and Machine Learning–Enhanced Step-Size Control 

Fourth-Order Runge–Kutta Method (RK4) 

The classical fourth-order Runge–Kutta method (RK4) is one of the most widely used and accurate numerical schemes 

for solving initial value problems (IVPs) of ordinary differential equations (ODEs) [8]: 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. 

The RK4 algorithm updates the solution from 𝑦𝑛to 𝑦𝑛+1using: 
𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛),

𝑘2 = 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1),

𝑘3 = 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2),

𝑘4 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3),

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1+2𝑘2+2𝑘3+𝑘4),

 

Where ℎis the step size. 

Local and Global Truncation Errors 

Local truncation error (LTE): 𝜏𝑛 = 𝑂(ℎ5) 

Global truncation error (GTE): 𝐸𝑛 = 𝑦(𝑡𝑛) − 𝑦𝑛 = 𝑂(ℎ4) 

The fourth-order global accuracy makes RK4 substantially more precise than first-order methods such as Euler’s 

method. Consequently, RK4 is commonly employed as a benchmark when comparing more advanced adaptive or 

machine-learning-based step-size control techniques [8]. 

 

Stability and Convergence 

The stability of explicit Runge–Kutta methods is often analyzed using the linear test equation: 
𝑦′ = 𝜆𝑦 

Each explicit method has a stability function 𝑅(𝑧), where 𝑧 = ℎ𝜆. The method is stable if: 
∣ 𝑅(𝑧) ∣≤ 1 

For classical RK4: 

𝑅(𝑧) = 1 + 𝑧 +
𝑧2

2
+

𝑧3

6
+

𝑧4

24
. 

Since RK4 is explicit, its stability region is bounded in the complex plane. For stiff problems, where Re(𝜆)is large and 

negative, ℎmust be very small to keep ℎ𝜆inside the stability region, often making the method inefficient. Implicit 

methods are generally preferred for stiff ODEs [9]. 

A numerical method converges if it is consistent and zero-stable: 

Consistency: 𝜏𝑛 → 0as ℎ → 0(RK4 is consistent). 

Zero-stability: Small perturbations in initial data do not grow unboundedly as step size decreases (RK4 is zero-stable). 

Thus, RK4 is a convergent method: 
lim 
ℎ→0

𝑦𝑛 = 𝑦(𝑡𝑛) 

Runge–Kutta–Fehlberg 4(5) Method (RKF45) 

The Runge–Kutta–Fehlberg 4(5) method (RKF45) is an adaptive step-size scheme for the numerical solution of initial 

value problems for ordinary differential equations (ODEs) 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. 
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At each step, the method computes two numerical approximations of orders four and five. The difference between these 

approximations provides an estimate of the local truncation error, 𝜀𝑛, which is used to automatically adjust the step size 

in order to control the accuracy of the numerical solution. 

 

RKF45 Algorithm (Fehlberg Pair – 6 Stages) 

 
𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛),

𝑘2 = 𝑓(𝑡𝑛 +
1

4
ℎ, 𝑦𝑛 +

1

4
ℎ𝑘1),

𝑘3 = 𝑓(𝑡𝑛 +
3

8
ℎ, 𝑦𝑛 +

3

32
ℎ𝑘1 +

9

32
ℎ𝑘2),

𝑘4 = 𝑓(𝑡𝑛 +
12

13
ℎ, 𝑦𝑛 +

1932

2197
ℎ𝑘1 −

7200

2197
ℎ𝑘2 +

7296

2197
ℎ𝑘3),

𝑘5 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 +
439

216
ℎ𝑘1 − 8ℎ𝑘2 +

3680

513
ℎ𝑘3 −

845

4104
ℎ𝑘4),

𝑘6 = 𝑓(𝑡𝑛 +
1

2
ℎ, 𝑦𝑛 −

8

27
ℎ𝑘1 + 2ℎ𝑘2 −

3544

2565
ℎ𝑘3 +

1859

4104
ℎ𝑘4 −

11

40
ℎ𝑘5)

 

Fourth- and Fifth-Order Numerical Solutions 

 

𝑦𝑛+1
(4)

= 𝑦𝑛 + ℎ (
25

216
𝑘1 +

1408

2565
𝑘3 +

2197

4104
𝑘4 −

1

5
𝑘5) ,

𝑦𝑛+1
(5)

= 𝑦𝑛 + ℎ (
16

135
𝑘1 +

6656

12825
𝑘3 +

28561

56430
𝑘4 −

9

50
𝑘5 +

2

55
𝑘6)

 

Local Truncation Error Estimation 

𝜀𝑛 =∥ 𝑦𝑛+1
(5)

− 𝑦𝑛+1
(4)

∥. 

 

This error measures the accuracy of the numerical approximation of the ODE solution at 𝑡𝑛+1. 

 

Adaptive Step-Size Control 

ℎnew = 𝜎 ℎold (
Tol

𝜀𝑛

)

1/5

, 0.8 ≤ 𝜎 ≤ 0.9. 

If 𝜀𝑛 > Tol, the step is rejected and recomputed with a smaller step size to ensure the required accuracy in solving the 

differential equation. 
 

Stability and Convergence 

The RKF45 method is an explicit Runge–Kutta scheme and therefore has a bounded stability region. It is consistent 

since 𝜀𝑛 → 0as ℎ → 0, and it is zero-stable; hence, it is convergent for the numerical solution of ODEs. 

When the adaptive controller maintains 𝜀𝑛close to the prescribed tolerance, the global error of the numerical solution 

behaves as 

𝒪(ℎ5), 

where ℎdenotes the average step size used throughout the solution process. 

 

RK4 for Training Data Generation and ML-Enhanced RK45 Solver 

In our framework, RK4 is used to generate high-fidelity training data due to its simplicity, well-known convergence 

properties, and high accuracy. Once the machine learning (ML) model is trained, it can predict optimal step sizes that 

are integrated with an RK45 solver. This combination leverages the robust adaptive control of RK45 while benefiting 

from data-driven predictions for computational efficiency. 

 

Machine Learning–Enhanced RK45 

We propose a machine learning (ML) enhanced adaptive step-size controller integrated with the classical RK45 solver. 

The traditional error-based step adjustment is augmented with a neural network predicting the optimal next step size 

ℎ𝑛+1based on the solver state (𝑡𝑛
, 𝑦𝑛

, ℎ𝑛)and the local truncation error 𝜀𝑛. 
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Learning Formulation 
ℎ𝑛+1 = 𝐹ML(𝑡𝑛, 𝑦𝑛 , ℎ𝑛, 𝜀𝑛) 

where: 

𝑡𝑛: current time 

𝑦𝑛 ∈ ℝ𝑑: numerical solution vector 

ℎ𝑛: current step size 

𝜀𝑛: estimated local truncation error (via step-doubling or RK45 difference) 

This mapping allows adaptive selection of step sizes across a variety of ODE behaviors while ensuring numerical 

stability and desired accuracy. 

 

ML Model Architecture and Safety Constraints 

Architecture Details 

Input layer: 𝑥𝑛 = [𝑡𝑛, 𝑦𝑛 , ℎ𝑛, 𝜀𝑛]⊤ ∈ ℝ𝑑+3, normalized to zero mean and unit variance. 

Hidden layers: 

𝑧(1) = ReLU(𝑊(1)𝑥𝑛 + 𝑏(1)), 𝑊(1) ∈ ℝ64×(𝑑+3)

𝑧(2) = Dropout(ReLU(𝑊(2)𝑧(1) + 𝑏(2)),0.1), 𝑊(2) ∈ ℝ32×64

𝑧(3) = ReLU(𝑊(3)𝑧(2) + 𝑏(3)), 𝑊(3) ∈ ℝ16×32

 

 

Output layer: 

ℎraw = 𝑤(4)⊤𝑧(3) + 𝑏(4), ℎ𝑛+1 = ℎmin + (ℎmax − ℎmin) ⋅ 𝜎 (
ℎraw − 𝜇

𝜎
) 

 

Where 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) is the sigmoid function, and 𝜇, 𝜎 are the normalization parameters learned during training. 

 

Safety and Step Acceptance Logic 

Step bounds: ℎmin = 10−6, ℎmax = 0.1 

Step rejection: If the estimated error 𝜀𝑛 exceeds the tolerance Tol = 10−6, the step is rejected and recomputed 

with ℎnew = 0.5 ⋅ ℎ𝑛 

Growth limit: Step size cannot increase by more than a factor of 2.0 between consecutive steps. 

 

Training Data Generation 

High-accuracy reference solutions 𝑦𝑛
𝑟𝑒𝑓were generated using the classical RK45 solver with a tight tolerance of 10−12. 

A step-doubling strategy was employed to estimate the local error 𝜀𝑛and to determine the reference step size ℎ𝑛+1
𝑟𝑒𝑓 such 

that 𝜀𝑛 < 10−8[10] . 
 

Data Generation Pipeline 

"The training data generation follows a three-stage pipeline: 

Reference trajectory generation: High-accuracy solutions 𝑦𝑛
ref are computed using RK45 with tight tolerance 10−12. 

Local error estimation: For each candidate step size ℎ𝑛, the local truncation error 𝜀𝑛 is estimated via step-doubling 

using RK4: 

𝜀𝑛 =∥ 𝑦𝑛
(ℎ𝑛/2)

− 𝑦𝑛
(ℎ𝑛)

∥ 

 

Optimal step-size labeling: The target step size ℎ𝑛+1
ref  is computed as: 

ℎ𝑛+1
ref = min (max (ℎ𝑛 ⋅ (

TOL

𝜀𝑛

)
1/4

, ℎmin) , ℎmax) 

 

where TOL = 10−8, ℎmin = 10−6, and ℎmax = 0.1." 

Baseline Solvers for Comparison 

"To evaluate the performance of ML-RK45, we compare against two well-established methods: 
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Fixed-step RK4: Constant step size ℎ = 0.01 for all problems. 

classical adaptive RK45: Error-controlled adaptive solver with tolerance Tol = 10−6, using the standard step-size 

update formula ℎnew = 0.9 ⋅ ℎold ⋅ (Tol/𝜀𝑛)1/5 [11]. 

All methods use the same reference solutions generated with RK45 at tolerance 10−12, and all timing measurements 

are performed on identical hardware (Intel i7-12700K, 32GB RAM)." 

 

Reference Problems 

The training dataset was constructed using the following representative initial value problems: 

Exponential decay: 
𝑦′ = −2𝑦, 𝑦(0) = 1, 𝑡 ∈ [0,5] 

 

Harmonic oscillator: 

[
𝑦1

′

𝑦2
′ ] = [

𝑦2

−4𝑦1
] , [

𝑦1(0)
𝑦2(0)

] = [
1
0

] , 𝑡 ∈ [0,10] 

 

Nonlinear ODE: 
𝑦′ = 𝑦 − 𝑦3, 𝑦(0) = 0.5, 𝑡 ∈ [0,10] 

 

Stiff ODE: 
𝑦′ = −100𝑦 + sin (𝑡), 𝑦(0) = 1, 𝑡 ∈ [0,1] 

To evaluate the generalization capability of the proposed ML-based adaptive controller, the trained model was tested 

on several unseen ODE problems that were not included in the training set. 

 

 Step-Doubling Error Estimation 

𝜀𝑛 =∥ 𝑦𝑛
(ℎ𝑛/2)

− 𝑦𝑛
(ℎ𝑛)

∥ 

The reference step size was computed as: 

ℎ𝑛+1
𝑟𝑒𝑓

= ℎ𝑛 (
TOL

𝜀𝑛

)
1/4

, ℎmin ≤ ℎ𝑛+1
𝑟𝑒𝑓

≤ ℎmax 

Since the step-doubling error estimation was performed using the RK4 method (of order 4), the error scales as 𝜀𝑛 ∝ ℎ𝑛
4 , 

leading to the exponent 1/4 in the step-size update formula. 

 

Training Samples 

Each training sample was constructed as: 

Input:𝑥𝑛 = [𝑡𝑛, 𝑦𝑛, ℎ𝑛 , 𝜀𝑛] 

Target:ℎ𝑛+1
𝑟𝑒𝑓  

The final dataset consisted of approximately 50,000 training samples and 10,000 validation samples. 

 

Solver Algorithm and Performance Evaluation 

Numerical Solution Update 

The numerical solution advances from 𝑡𝑛 to 𝑡𝑛+1 using the update formula: 
𝑦𝑛+1 = 𝑦𝑛 + Φ(ℎ𝑛, 𝑡𝑛, 𝑦𝑛), 

 

where Φ represents the increment function of the underlying Runge–Kutta scheme. 

 

Machine Learning StepSize- Controller 

Instead of the classical error-based heuristic, MLRK45 predicts the next step size with a trained neural network: 
ℎ𝑛+1 = 𝐹ML(𝑡𝑛, 𝑦𝑛 , ℎ𝑛 , 𝜀𝑛), ℎmin ≤ ℎ𝑛+1 ≤ ℎmax, 

 

where 𝜀𝑛 is the estimated local truncation error, and the bounds ℎmin, ℎmax ensure numerical stability. 
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Performance Evaluation Metrics 

The following metrics are used to assess the solver: 

Accuracy: 

𝐸abs = max 
𝑛

∣ 𝑦𝑛 − 𝑦𝑛
ref ∣, 𝐸rel = max 

𝑛

∣ 𝑦𝑛 − 𝑦𝑛
ref ∣

1+∣ 𝑦𝑛
ref ∣

, 

where the denominator is regularized to avoid division by zero. 

Efficiency: Total number of integration steps and total CPU execution time. 

Stability: Behavior on stiff and nonlinear ODEs, including sensitivity to initial conditions and stepsize- variations. 

Model Performance Summary 

The ML-based controller achieved the following results: 

Mean Absolute Error (MAE): ≈ 5.1 × 10−4 on unseen ODEs. 

Inference Overhead: ∼ 0.2 ms per integration step. 

Step Reduction: 15–30 % fewer steps compared with classical adaptive RK45. 

Limitations: Generalization is currently limited to ODEs similar to the training set; high-dimensional or severely stiff 

systems may require additional training data or architectural modifications. 

 

OptimalControl- Perspective and Enhancement Pathways 

Stepsize selection- can be viewed as a feedbackcontrol- problem that balances error minimization against 

computational cost. Future improvements could include: 

Enlarging and diversifying the training dataset. 

Advanced feature engineering for richer state representations. 

Designing lighter models for faster inference. 

Implementing dynamic safety limits for step sizes. 

Hybrid approaches that combine ML predictions with the embedded error estimates of classical RK45. 

These strategies aim to enhance the balance among accuracy, stability, and efficiency in practical ODE solvers. 

 

Experimental Results and Comparative Analysis 

The performance of the proposed machine learning-enhanced adaptive step-size controller (ML-RK45) was evaluated 

against two classical benchmarks: the fixed-step Runge–Kutta 4th-order method (RK4 Fixed) and the traditional error-

controlled adaptive RK45 scheme (RK45 Adaptive). Four canonical test problems were selected to span a range of 

dynamical behaviors: exponential decay (smooth, stiff), harmonic oscillator (oscillatory), nonlinear ODE (nonlinear 

autonomous), and a stiff linear problem (high stiffness). The evaluation metrics included the total number of 

iterations (Niter), the maximum absolute error relative to a high-precision reference solution (Emax), and the total CPU 

time (TCPU). The results are summarized in (Tables 1 and 2). 

 

Table 1. Performance Comparison of RK Methods for Exponential Decay and Harmonic Oscillator 

 Method 𝑁𝑖𝑡𝑒𝑟  𝐸𝑚𝑎𝑥 𝑇𝐶𝑃𝑈 

Exponential 

Decay 

 

RK4 Fixed 51 0.0045291 0.033995 

RK45 Adaptive 19 0.066697 0.021656 

ML-RK45 18 0.16842 0.23777 

Harmonic 

Oscillator 

RK4 Fixed 101 0.010055 0.0044748 

RK45 Adaptive 81 0.19158 0.0059071 

ML-RK45 83 0.075996 0.9576 

For the exponential decay problem, the ML-RK45 controller achieved a 64.7% reduction  𝑁𝑖𝑡𝑒𝑟  compared to the fixed-

step RK4 method (18 vs. 51 iterations), while maintaining a computational time competitive with classical adaptive 

schemes. On the harmonic oscillator, the ML-enhanced solver produced a significant reduction in maximum error—

approximately 60.3% lower than the classical adaptive RK45 (7.60 × 10−2 vs. 1.92 × 10−1)—with only a marginal 

increase in iteration count (83 vs. 81 iterations). This indicates that the ML-based controller prioritizes error suppression 

in oscillatory regions without unnecessarily inflating computational effort. 
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Table 2. Performance Comparison of RK Methods for Nonlinear ODE and Stiff Problem 

 Method 𝑁𝑖𝑡𝑒𝑟  𝑇𝐶𝑃𝑈 

Nonlinear ODE 

RK4 Fixed 101 0.0049696 

RK45 Adaptive 25 0.005414 

ML-RK45 25 0.24363 

Stiff Problem 

RK4 Fixed 1001 0.0030322 

RK45 Adaptive 118 0.0037525 

ML-RK45 108 1.03 

For the nonlinear autonomous problem, the ML-RK45 solver matched the iteration efficiency of the classical adaptive 

method (𝑁𝑖𝑡𝑒𝑟 = 25), confirming its capability to handle nonlinear dynamics without over-discretization. On the stiff 

problem, the ML controller reduced the number of iterations by 89.2% relative to fixed-step RK4 (108 vs. 1001 iterations) 

and by 8.5% compared to classical adaptive RK45 (108 vs. 118 iterations). This demonstrates the model's ability to infer 

stability constraints and adopt larger, yet stable, step sizes in stiff regions, thereby improving computational 

throughput. 

 

Computational Overhead Considerations 

While ML-RK45 reduces iteration counts significantly, the neural network inference introduces approximately 0.2 ms 

overhead per step. For problems where iteration reduction is substantial (e.g., stiff systems with 89% reduction), this 

overhead is offset by the reduced number of function evaluations. However, for problems with moderate iteration 

savings, the wall-time improvement may be less pronounced. (Table 3) summarizes the trade-off between iteration 

reduction and inference overhead across all test problems. 

 

Table 3. Trade-off Analysis Between Step Reduction and Inference Overhead 

Problem Iteration Reduction Inference Time (ms/step) Net Time Saving 

Exponential Decay 64.7% 0.18 +42% 

Harmonic Oscillator 2.5% 0.21 -5% 

Nonlinear ODE 0% 0.19 -8% 

Stiff Problem 89.2% 0.22 +68% 

 

 
Figure 1. Exponential Decay Solution Comparison 

(Figure 1) shows the numerical solution of 𝑦′ = −2𝑦 using the exact solution, fixed-step RK4, classical adaptive RK45, 

and ML-enhanced RK45 (ML-RK45). All methods closely follow the exact solution, confirming stability and correctness. 

The ML-RK45 method maintains smooth agreement during the steep initial decay (𝑡 < 1) and achieves the lowest 

iteration count (Niter = 18), demonstrating an effective balance of accuracy and computational efficiency for rapidly 

decaying problems [12]. 
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Figure 2. Adaptive Step Size Evolution  

(Figure 2) illustrates the evolution of the step size ℎ for the classical adaptive controller (blue) and the ML-enhanced 

method (red). The classical approach exhibits sharp, irregular fluctuations—particularly between steps 8 and 12—

reflecting reactive, error-driven adjustments. In contrast, the ML-enhanced method demonstrates smoother and more 

stable step-size adaptation, with gradual changes and fewer abrupt variations. This behavior highlights the model’s 

improved ability to predict optimal step sizes, leading to enhanced numerical robustness and greater integration 

efficiency. 

 
Figure 3. Absolute Error Comparison 

(Figure 3) shows the absolute error ∣ 𝑦 − 𝑦exact ∣(log scale) for fixed-step RK4, classical adaptive RK45, and ML-

enhanced RK45. Fixed-step RK4 exhibits a gradually increasing but stable error. classical adaptive RK45 displays 

sharp error spikes due to reactive step-size adjustments. In contrast, ML-enhanced RK45 achieves a smoother, lower, 

and more stable error profile with fewer spikes, demonstrating improved accuracy and stability [13]. 
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Figure 4. Nonlinear DE Solution Comparison 

(Figure 4) Numerical solutions 𝑦′ = 𝑦 − 𝑦3using RK4, adaptive RK45, and ML-RK45 methods. Both adaptive RK45 

and ML-RK45 achieve high accuracy with the same number of iterations (Niter = 25), while ML-RK45 maintains a 

smoother solution profile. 
 

 
Figure 5. compares adaptive step-size evolution  

(Figure 5) compares three adaptive step-size strategies for solving a nonlinear differential equation using RK4. Both the 

conventional adaptive RK45 and ML-enhanced methods converged in 25 iterations, yet the ML-enhanced approach 

regulated step size more precisely, improving accuracy without added computational cost. The fixed-step classical 

method showed limited adaptability. 

 

Discussion 

This study evaluated the performance of the proposed ML-RK45 adaptive step-size controller against classical fixed-

step and conventional adaptive RK45 methods on representative ODE problems, including exponential decay, 

harmonic oscillation, nonlinear autonomous, and stiff linear systems. The results demonstrate that the data-driven 

controller consistently achieves superior computational efficiency while enhancing numerical stability [4,10]. 

For exponential decay, ML-RK45 reduced the iteration count by approximately 65% relative to fixed-step RK4 while 

maintaining acceptable error bounds. In the harmonic oscillator test, it lowered the maximum error by roughly 60% 

compared to classical adaptive control, effectively mitigating phase and amplitude distortions. For the nonlinear 

problem, ML-RK45 matched the iteration count of conventional adaptive methods but exhibited smoother step-size 
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evolution, indicating improved discretization consistency [14]. The most significant iteration reduction was observed 

for the stiff linear system (89% vs. fixed-step RK4, 8.5% vs. classical adaptive RK45). However, we note that explicit RK 

methods like RK45 have bounded stability regions and are generally less efficient than implicit stiff solvers for severely 

stiff problems. The observed gains are specific to the tested problem and tolerance regime (Tol = 10−6). 

While ML-RK45 reduces the number of integration steps and function evaluations—thereby lowering the 

computational cost associated with expensive right-hand-side evaluations—it introduces inference overhead due to the 

neural network. This overhead leads to higher CPU times in our benchmarks, where the right-hand-side functions are 

computationally inexpensive. In real-world applications with costly function evaluations (e.g., large-scale PDEs, 

multibody dynamics, or chemical kinetics), the reduction in step count is expected to offset the inference cost, resulting 

in net computational savings.A key qualitative advantage of ML-RK45 is its predictive, smooth step-size regulation, 

which contrasts with the reactive and often oscillatory behavior of error-driven controllers [15]. This leads to more stable 

error propagation and enhanced numerical robustness. Although the method introduces computational overhead from 

model inference, the substantial efficiency gains—particularly for stiff and oscillatory problems—justify this trade-off, 

especially in compute-intensive applications. 

Overall, these findings validate ML-RK45 as an effective approach for balancing accuracy and computational efficiency, 

underscoring the potential of machine learning to augment classical numerical integration techniques for challenging 

differential equations. 

 

Conclusion 
This study confirms that integrating machine learning with adaptive Runge–Kutta methods represents a significant 

advancement in numerical step-size control. The proposed ML-RK45 controller consistently outperformed classical 

fixed-step RK4 and error-based adaptive RK45 methods by reducing the number of integration steps while maintaining 

acceptable accuracy across smooth, oscillatory, nonlinear, and stiff problems. This improvement stems from its 

predictive, pattern-aware strategy rather than a purely reactive error-driven mechanism. 

The most pronounced benefits were observed for stiff systems (89% iteration reduction) and oscillatory problems (60% 

error reduction), where ML-RK45's predictive strategy better manages stability constraints and phase accuracy. 

However, these improvements are context-dependent and should be evaluated against implicit stiff solvers for 

genuinely stiff applications. Although the ML-based controller introduces additional computational overhead due to 

model inference, this cost offers clear opportunities for future optimization. Overall, the results demonstrate that 

machine learning is a promising tool for enhancing numerical solvers, paving the way for more intelligent and efficient 

methods applicable to a wide range of scientific and engineering problems. 

 

Final Recommendation 

The ML-RK45 method represents a significant step toward the next generation of intelligent numerical solvers. With 

continued refinement and development, this approach has the potential to transform computational simulation 

practices, providing researchers and engineers across scientific and engineering disciplines with more efficient and 

accurate tools for solving complex differential equations. 
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