

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 27

Original article

Compliance of Software Developers and Engineers with the Formal

Implementation of Software Testing at the General Electricity Company of Libya

Mohammed Hasni1 , Awraida Almesmari2* , Ousama Awad3 , Munsif Husayn4

1University of Derna, Derna, Libya
2Department of Software Engineering, University of Derna, Derna, Libya

3College of Engineering, University of Derna, Derna, Libya
4College of Engineering technologies, Alqubbah, Libya

Corresponding email. wardawardaabdrazeg@gmail.com

Abstract

Software testing is one of the essential parts of the Software Development Life Cycle (SDLC). It is a means to discover

errors during the execution of the program, which ensures obtaining a defect-free software system. This testing evaluates

the capabilities of the program and its usability. This study aims to analyze the extent of commitment of software developers

and engineers to the formal implementation of software testing and to identify the factors affecting this commitment at the

Libyan Electricity Company. The study relies on the descriptive analytical survey methodology by distributing an

electronic questionnaire to a sample consisting of 30 participants representing different categories (developers, engineers,

programmers, managers, and technicians) from different Libyan cities working in the General Electricity Company. The

results showed that the commitment to software testing within the Libyan Electricity Company still lacks formality and

that the level of commitment remains limited. The most prominent challenges are weak documentation, the absence of a

testing environment, and the increase in problems after delivery. The most important influencing factors are the lack of

specialized staff, the absence of a clear testing policy, and a low level of awareness of the importance of testing. Based on

the results of the study, several recommendations were proposed to enhance the commitment to the implementation of

software testing and to apply it in the present and future. It is recommended to provide training programs to raise

awareness and skills, and provide specialized staff.

Keywords. Software Testing, General Electricity Company, Unit Testing, Integration Testing.

Introduction

Software testing plays a critical role in software engineering as it is essential to ensure the quality, performance, security,

and reliability of software systems. Through testing, developers can identify and correct any errors or defects in the

program. It improves the program's overall functionality and ensures that the software meets customer needs and

expectations. Software plays a pivotal role in supporting administrative and technical operations within electricity

companies. These companies have increasingly relied on integrated information systems to manage their internal affairs

and operate their infrastructure with high efficiency. The systems include internally developed administrative

platforms designed specifically for managing human resources, monitoring legal affairs, and automating various

administrative procedures. They also include ready-made systems received from external providers that cover vital

areas such as finance, operations, maintenance, and network control. Based on the importance of software testing in

ensuring system quality, this study focuses on analyzing the commitment of software developers and engineers at

Libyan electricity companies to the formal implementation of testing according to the approved standards. Besides, it

analyzes the actual practices followed in the internal work environment. The study seeks to determine the level of

commitment in Unit Testing, Integration Testing, System Testing, and Acceptance Testing, the strategies used, and the

manual and automated execution methods. It also aims to monitor the obstacles that hinder the application of formal

testing methodologies and to provide practical recommendations that contribute to improving software quality and

efficiency in line with international quality standards. This study relies on the descriptive analytical survey

methodology. An electronic questionnaire was used as a main tool for collecting data from the participants, including

developers, engineers, managers, and technicians. This method describes the level of commitment to software testing

implementation within the Electricity Company in Libya, and aims to uncover the shortcomings or strengths in the

practices followed. Due to the dearth of in-depth local studies at Libyan electricity companies, this study aims to fill this

gap by analyzing the actual level of commitment in a vital institutional environment, identifying the factors influencing

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR
mailto:wardawardaabdrazeg@gmail.com
https://orcid.org/0009-0007-3424-4723
https://orcid.org/0009-0008-6488-5959
https://orcid.org/0009-0009-4319-8583
https://orcid.org/0009-0004-5551-1868

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 28

it, and proposing applicable practical strategies to strengthen this commitment. The expected results are likely to

support decision-makers, developers, and IT teams in adopting more effective testing policies. This would positively

effect on the reliability of the digital infrastructure of electricity companies and their operational efficiency.

Objective

This study aims to analyze the level of commitment of software developers and engineers at Libyan electricity

companies to the formal implementation of software testing during the development of internal administrative systems,

particularly in critical departments such as Human Resources and Legal Affairs. This is examined in light of actual

practices and internationally recognized standards, which require rigorous testing to detect defects in order to avoid as

many errors as possible. Ultimately, testing reveals defects, improves system quality, estimates software reliability,

reduces failures, and verifies whether the software meets the program requirements and client specifications, or

functions correctly. It also helps build customer confidence by providing them with a high-quality product [1]. The

study also seeks to understand the perspective of software developers on testing, their knowledge of it, and how the

company views software testing. This objective arises from the need to ensure the accuracy and reliability of these

systems, given their reliance on sensitive data such as employee personnel files, administrative information, and legal

records. Furthermore, the study highlights the factors influencing the level of commitment to software testing, including

the organizational, technical, and human factors. Identifying these factors contributes to a broader understanding of the

extent of commitment to implementing software testing. It also provides recommendations to strengthen commitment

to the formal implementation of software testing within the General Electricity Company.

Significance of the study

Improving the quality of internal administrative systems in electricity companies is of great importance. Software

testing is considered a fundamental part of the Software Development Life Cycle, particularly in critical departments

such as Human Resources and Legal Affairs. Any malfunction in these systems may lead to errors such as the loss of

employee data or weaknesses in managing legal documents, which could negatively affect the institution and its

operational efficiency. The formal implementation of software testing ensures the early detection of errors, thereby

reducing repair costs and improving system performance. It also enables developers to verify that the software complies

with the required functional and non-functional standards, such as security, speed, and reliability. It is especially critical

for systems dealing with confidential and sensitive data. This study is the first study in the local context that analyzes

the extent of commitment of software developers and engineers to the formal implementation of testing. It provides a

valuable contribution to the software engineering field by shedding light on a vital sector, such as electricity, with a

particular focus on internal administrative systems that have not received as much empirical study compared to

operational or production systems. Hence, the success of testing the operational systems (i.e., all the software systems

operating in the company), which help it to complete its work easily by meeting its needs from those systems; and

supporting it in making decisions more accurately. Therefore, the weakness of the administrative system (i.e., Software-

based administrative work) related to this software in general is caused by the lack of adequate tests for those software

systems that have not been tested by software testing methods adopted in software engineering.

Research Problem

Electricity companies increasingly rely on internal administrative systems to manage human resources and legal

operations. These systems involve the processing of sensitive data such as employee records, contracts, regulations, and

official correspondence. However, practices in some institutions indicate that the development of these systems may

not necessarily include strict adherence to the formal implementation of software testing. This increases the likelihood

of functional errors or security vulnerabilities that could affect work efficiency and data reliability. The absence of

systematic testing or reliance solely on informal testing may lead to several operational problems, such as the loss of

legal documents or weak compliance with regulatory standards. Hence, there arises a need to study the extent of

developers’ commitment to implementing software testing in these systems and to understand the factors that hinder

this commitment to propose practical solutions to improve software quality and ensure its reliability. Therefore, this

study addressed the following research questions:

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 29

Q1 – To what extent are software developers and engineers in Libyan electricity companies committed to the formal

implementation of software testing in internal administrative systems?

Q2 – What are the most common types of software testing applied in departments such as Human Resources and Legal

Affairs?

Q3 – What are the factors that influence the commitment to implementing these tests?

Theoretical Framework

1. Generic Software Testing Terms

Software Testing

Software Testing is an essential activity to discover all the errors and bugs in the software before actual deployment of

the product [2]. Software Testing is a process to evaluate the software and identify defects [3]. Software must perform

as per requirements; however, it is very common to have bugs or defects in software. The bugs can be generated during

development, bug fixing, feature addition, code refactoring, and even during software maintenance [4]. Software testing

seeks to analyze a product's qualities or capabilities and decide whether or not it meets the required requirements, and

how to improve them. Software testing is the process of running tests to find vulnerabilities and generate defect-free

software. Software testing is a well-researched topic that has experienced a lot of development work and will become

increasingly significant in the future [5].

Verification

is the checking of software documents, code, design, and program. It does not involve test execution. It uses methods

like auditing, inspections, and walk-through [2]. Verification is done at the beginning of the development process. It

includes reviews of all customer requirements and meetings, inspections to evaluate documents, code, and

specifications [6]. It is the process of checking the software concerning the specification [7].

Validation

is the dynamic method of validating and testing the actual product. It does not include executions. It uses methods like

white box, black box, etc [2]. Validation is about determining if the system complies with the requirements and performs

functions for which it is designed, and meets [6]. It is the process of checking software concerning the customer's

expectation [7].

Quality Assurance (QA)

is a group of activities to make sure that the maintenance or/and development process is adequate to make sure that the

system meets its objectives. A standardized and planned set of activities necessary to provide adequate confidence that

requirements are properly established and services or products conform to specified requirements. It does not involve

executions [2].

Software Quality

is defined as the ability of the developed software to meet all users’ requirements as well as the company’s stakeholders’

requirements. Software quality can be achieved by different approaches throughout the software development lifecycle

(SDLC) phases [8]. Nowadays, software quality is being prioritized, and there is a strong emphasis on developing high-

quality software solutions. Before creating a high-quality software product, several software quality attributes need to

be determined [5]. These quality attributes can be assured via the software quality assurance (SQA) [8].

Software quality assurance (SQA)

consists of many activities to ensure that the produced software is adequate in terms of software services and fulfills all

the described requirements by the client [8]. SQA encompasses a wide range of elements, from those that arise during

certain stages of software development to the majority of them. SQA requires a broad range of skills and is essential to

a project's overall success. An already-existing core set of competencies is expanded to include new data fields like

software and dependability. Therefore, an independent frame is necessary for SQA to function properly [5].

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 30

Quality Standards

Achieving software quality can be done by following the well-known international standards such as ISO/IEC and IEEE.

The ISO/IEC 9000 standard family can be followed by the software manufacturer organization to achieve an optimal

software quality management system. This family of standards provides guidelines to reach a good level of quality [8].

Software testing standard ISO/IEC/IEEE 29119 ISO 29119

is an international standard in the software testing process to support software testing. An organization can adapt to

use in a software development life cycle, an organization's development process, or their existing. When using

international standards, users will receive standards accepted by many people around the world, and the high quality

of the testing process in the organization [9].

2. Types of Testing

 There are three broad types of testing, as shown in (Figure 1) [7]. The type of testing that checks that every function of

a software application works in accordance with the requirement specification is known as functional testing. It basically

includes unit testing, integration testing, user acceptance testing, etc. Functionality of the system is checked, providing

some input (valid and invalid) and observing the respective output produced. This type of testing can be easily carried

out manually. The type of testing that checks the non-functional conditions (scalability, usability, endurance, etc.) of a

software application is known as non-functional testing. Non-functional testing is equally important as functional

testing. It basically includes performance testing, load testing, and usability testing. This type of testing is difficult to

carry out manually. When the software application has been deployed, and some enhancements or changes have been

made in the application, then the maintenance testing is done. It basically includes regression testing and maintenance

testing [2].

3. Levels of Testing

Unit testing

This testing emphasizes the individual unit or module in isolation [10]. This type is performed at the lowest level in

testing stages [6], [11]. It tests the basic unit level of functionality of a software product or application and is often called

“unit”, “module”, or “component” testing [6], [7], [10], [11]. It is the most modest collection of lines of code that can be

tested. Unit testing is considered a white-box testing class because it is meant to evaluate the code as implemented

rather than assessing conformance to some set of requirements [7]. As this testing type is performed by developers, they

need to have proper knowledge about code design. A quality assurance team member can also perform this type of

testing. It is cost effective testing type, and also it is not time consuming activity. Several other testing techniques are

performed under unit testing effectively, like functional testing, structural testing, etc. Unit testing does not depend on

the whole system. This testing can also be performed while fixing issues in parallel [11].

Unit testing uses several effective testing techniques. The testing techniques are categorized into three types:

a. Functional Testing.

b. Structural Testing.

c. Heuristic or Intuitive Testing [7].

Integration Testing

It is performed when two or more components or modules are integrated into a larger structure [6] or when two or

more tested units [11] are combined. That must work together to ensure an error-free flow of control and data among

combined units and their overall correct design and integration [10]. Testing is often done on both the interfaces of the

modules. It occurs after unit testing and before validation [6]. The main aim of integration testing is to combine these

small units and test them together. Every time a tester needs to perform each test after adding a new unit to the existing

group. On performing this testing type continuously, fewer errors may occur at the time of regression testing. If

immediate bugs are reported while performing integration testing, then less effort will require for regression testing. If

a new module gets added in the structure, testers then need to verify each test case repeatedly from start to end.

Integration testing is an upper-level testing [11]. Integration testing is an efficient technique for constructing the

program structure as well as for performing tests to uncover errors related to interfacing. The objective of integration

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 31

testing is to integrate the unit tested components and test them as a group. Integration testing strategies can be broadly

categorized into two principal approaches: top-down and bottom-up. The top-down strategy is an incremental

procedure that begins with the main control module and progressively incorporates subordinate modules into the

overall program structure. This integration may proceed in either a depth-first or breadth-first manner, ensuring that

the system is gradually assembled while maintaining the hierarchical control flow. In contrast, the bottom-up strategy

initiates development and testing with atomic modules, which represent the smallest functional units of the system. As

integration proceeds upward, the processing required for higher-level modules is consistently supported by the

availability of subordinate elements. Together, these strategies provide complementary pathways for verifying system

functionality, with top-down emphasizing control and structural coherence, and bottom-up ensuring that foundational

components are thoroughly validated before higher-level integration [7].

System Testing

It involves testing an integrated complete software to check against its compliance with its requirements [7] [10]. It

verifies the overall interaction of components to ensure the unanimous working of all modules and programs without

error [10]. It executes to ensure the end-to-end quality of the whole system, and it is often based on the functional

specification of the system [6] (tests the functionality of software). Non-functional quality attributes (tests quality of

software), testing such as performance, reliability, usability, security testing and maintainability [6] [10]. Validation of

the whole architecture is the main aim of system testing. The quality of software can be ensured by performing system

testing. From the specified requirements, this testing is performed on the production environment. System testing falls

under black box testing [11]. System testing encompasses several distinct approaches, each designed to evaluate specific

aspects of software performance and reliability. Recovery testing focuses on the ability of an application to withstand

and recover from unexpected failures, such as crashes or hardware malfunctions. In this process, mechanisms like re-

initialization, checkpointing, data recovery, and restart procedures are examined to ensure that the system can

reconstruct itself correctly after forced failures. Security testing, by contrast, assesses the robustness of protection

mechanisms embedded within the system. The tester actively attempts to penetrate defenses, whether by acquiring

passwords through external means, deploying custom software to bypass safeguards, or overwhelming the system to

deny service. The overarching goal is to identify vulnerabilities and evaluate the system’s resilience against threats.

Graphical user interface testing is directed toward verifying that the product’s interface conforms to its specifications.

This involves checking the functionality and usability of menus, buttons, icons, toolbars, dialogue boxes, and windows

to ensure that the user experience is consistent and reliable. Compatibility testing, meanwhile, examines the system’s

ability to operate harmoniously within its broader environment. This includes verifying integration with hardware,

supporting software, database management systems, and operating systems to confirm that the developed system

functions seamlessly across diverse configurations. Collectively, these testing strategies provide a comprehensive

framework for validating system reliability, security, usability, and interoperability [7].

Acceptance Testing

 Acceptance testing is called the final stage of testing. It is a very important type of testing and is performed before

delivering the system to the end user. It tests whether the product meets all specified criteria given by the customer or

client [11]. Acceptance testing is known as Quality assurance (QA) testing, final testing, verification testing, and

validation testing [11]. The user carries this type of testing where the product is developed externally by a third party.

Acceptance testing falls under the black-box testing approach, where the user is not very much involved in the internal

working of the scheme [7]. The main aim of doing this testing is to check whether the system functions properly as per

the specified requirement, and no bugs should occur at this stage [11]. Acceptance testing may be executed at two

different levels: one at the system provider level and another at the end-user level [7].

Classification of Acceptance Testing

User Acceptance Testing

is an essential step before the system is finally deployed to the end-user. User acceptance testing is generally done by

the actual software user to ensure that it can handle the specified task in the real world scenarios [7].

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 32

Alpha Testing and Beta Testing

QA teams or developers generally have done this type of testing. Alpha testing is conducted in the presence of

developers and in the absence of users. In this testing, the following criteria are examined, such as spelling mistakes,

broken lines, and cloudy direction [7]. After completing the alpha testing successfully, beta testing is performed. Beta

testing is conducted by real users who actually handle the software in real-world scenarios. The customers provide their

assessment to the developer for the outcome of the experiment. It is also known as field testing. Feedback from the users

is used to improve the performance of the system/product before it is released to other users/customers [7].

Operational Acceptance Testing

also known as functional preparedness testing, is an approach of assuring all the specified processes and procedures of

the system are in place to allow the user/tester to use it [7].

Contact and Regulation Acceptance Testing

The system is tested against the required criteria as mentioned in the contract document. It is also proven to check if it

meets all the government and local authority rules and regulations, even all the essential standards [7].

4. Software Testing Strategies

Manual Testing

Manual testing is the most established and most rigorous type of software testing [12]. Manual Testing may be a kind

of code take a look acting during which test cases area unit dead manually by a tester while not victimisation any

machine-driven tools. The aim of Manual Testing is to spot bugs, issues, and defects within the code application [3].

Manual code testing is the most primitive technique of all testing varieties [3,12], and it helps to seek out essential bugs

within the code application. Any new application should be manually tested before its testing is machine-driven. It

needs additional effort; however, it is critical to ascertain whether automation is practicable. Manual testing ideas do

not need information about any testing tool. It requires a tester to perform manual test operations on the software

application without the help of test automation [12].

Automation testing

Automation testing could be a code testing technique that performs exploitation of special machine-driven testing code

tools to execute a test suit suite. On the contrary, Manual Testing is performed by somebody sitting in front of a PC,

fastidiously capital punishment the check steps. The automation testing code may also enter test knowledge into the

system under testing, compare expected and actual results, and generate careful check reports. Check automation

demands extended investments of cash and resources. Successive development cycles would require the execution of

the same check suite repeatedly. Employing a check automation tool, it is possible to record this check suite and replay

it as needed. Once the check suite is machine-driven, no human intervention is needed. This improved the ROI of check

Automation. The goal of Automation is to scale back the number of check cases to be run manually and not eliminate

Manual testing altogether [3]. Every organization has a unique reason for automating software quality activities.

Automated testing tools are able to execute tests, describe outcomes, and estimate results with earlier test runs. Tests

completed with these tools can be run over and over again at any time. The procedure used to implement automation

is called a test automation framework [12].

Software Testing Tools

Selenium is a widely used testing tool designed to automate tests performed on web browsers. Its versatility lies in its

ability to execute across multiple browsers while maintaining compatibility with a range of programming languages,

making it a flexible option for developers and testers [2]. Ranorex, by contrast, offers an integrated solution for mobile,

web, and desktop testing. It combines an intuitive click-and-go interface suitable for beginners with a powerful

integrated development environment (IDE) tailored for automation experts, though it is available only as licensed

software [2]. Lambda Test represents another significant advancement in cross-browser test automation, enabling users

to run Selenium-based automation tests on a secure, scalable, and reliable cloud-based Selenium Grid. This approach

enhances efficiency by providing a robust infrastructure for distributed testing across diverse browser environments

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 33

[2]. Would you like me to expand this into a comparative academic-style discussion that highlights the relative strengths

and limitations of each tool? That could make it more suitable for inclusion in a research manuscript or technical report.

5. Software Testing Techniques

The importance of software testing to software quality cannot be overemphasized. After the development of the code,

it is necessary to test the software to identify all the errors, and they must be fixed before releasing the software.

Although it is impossible to identify and fix all the errors in the software, every phase attempts to remove as many

errors as possible. Testing helps in finding the errors; however, it cannot be concluded that the software is free of errors

[13]. Thus, testing techniques can be categorized into two parts:

a. Static Testing.

b. Dynamic Testing.

Static Testing

 It refers to the method of testing where the code is not executed. It does not require highly skilled professionals since

the actual execution of the code is not done in this process. It starts with the initial phase of SDLC; hence, it is also

known as verification testing. The main objective of static testing is to enhance the quality of software products by

helping software professionals to identify and resolve their own errors that occur early during the development process.

Static testing is performed on documents like SRS, design documents, source code, test suites, and web page content. It

is performed before code deployment. As a result, it provides the evaluation of code and documentation. The static

testing techniques include: inspection, walkthrough, technical reviews, and informal reviews [13].

Dynamic Testing

Dynamic Testing is also known as validation, and it is a kind of software testing technique in which the dynamic

behavior of the code is analyzed. It requires a highly skilled professional with the proper domain knowledge. It involves

testing the software for the input and output values. The Dynamic Testing is divided into two categories [13]:

• Functional Testing or Black box testing.

• Structural testing or White Box testing.

Fig.1. Testing Techniques

For the commencement of the Testing process, the first step is to generate test cases. The test cases are developed using

various testing techniques for effective and accurate testing. The major testing techniques are Black box testing, White

Box testing, and Grey Box testing [14].

Black Box Testing Technique

Black box testing is a technique of testing software based on output requirements and without any knowledge of the

internal structure or coding in the program [15]. It tests the functionality of the application without going into its

implementation details. This technique can be applied to every level of testing within the SDLC. It mainly executes the

testing in such a way that it covers each and every functionality of the application to determine whether it meets the

initially specified requirements of the user or not. It is capable of finding incorrect functionalities by testing their

functionality at each minimum, maximum, and base case value. It is the simplest and most widespread testing process

used worldwide [14].

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 34

White Box Testing Technique

White Box testing is called clear box or glass box testing [14], and it is significantly effective as it is the method of testing

that not only tests the functionality of the software but also tests the internal structure of the application. While

designing the test cases to conduct the white box testing, programming skills are required to design the test cases. This

kind of testing can be applied to all levels, including unit, integration, or system testing. This type of testing fulfils the

need to determine whether the information systems protect data and maintain the intended functionality. As this kind

of testing process makes use of the internal logical arrangement of the software, it is capable of testing all the

independent paths of a module. Every logical decision is exercised, all loops are checked at each boundary level, and

internal data structures are also exercised. However, white box testing serves a purpose as a complex testing process

due to the inclusion of programming skills in the testing process [14]. It is a strategy for software debugging in which

the tester has excellent knowledge of how the program components interact. This method can be used for web services

applications. This is done based on customers view point; only the tester knows the set of inputs and predictable outputs

[15].

Grey Box Testing Technique

It is the combination of the White Box and Black Box Testing Technique serving the advantages of both [14]. It generally

succeeds in combining the benefits of both black box and white-box testing. Grey-box testing takes the straightforward

approach of black box testing [15]. The need for such kind of testing arose because, in this type of testing, the tester is

aware of the internal structure of the application; hence, testing the functionality in a better way, taking the internal

structure of the application into consideration [14]. However, it employs some limited knowledge of the inner workings

of the application, and knows fundamental aspects of the system. Therefore, a tester can verify both the output of the

user interface and the process that leads to that user interface output. Gray-box testing can be applied to most testing

phases; however, it is mostly used in integration testing [15].

6. Software Testing Life Cycle (STLC)

The software testing lifecycle is a sequence of activities conducted to perform software testing in a systematic and

planned manner. In STLC, different activities are carried out to improve the quality of the product. STLC is a subset of

the Software Development Life Cycle (SDLC) [1]. The cycle of software testing comprises requirements gathering and

analysis, preparing the test plan for the entire test process, scripting test cases, executing the test cases, comparing the

results obtained from execution, and finally, test closure, providing all test deliverables [16].

The phases of STLC are explained below

Requirement Analysis

 In this first phase of STLC, the test team studies the requirements and checks whether the requirements are testable or

not. Business requirement specification and software requirement specification play a very important role in this phase

[1]. In this phase of testing, the team and the Quality Assurance team study and analyze the requirements properly. The

testing team and the QA team try to understand the requirements thoroughly. If the testing team and QA team are

unable to understand any point from the requirements, then they can interact with stakeholders to solve the queries

related to the requirements in detail. Once testers and the QA team understand the requirement properly, it gives them

a clear idea about which type of testing will be required to test the product. Testing priorities can be set from this. Testers

can set the environment for testing [11].

Test Planning

In this phase, the test plan and test strategies are determined [11]. Once the test team is clear with the requirements, the

testers can start making test plans. A test plan is a proper strategy or approach that helps testers conduct their testing

[1]. The testing manager calculates the efforts, time, and cost estimation required for testing. Hence, the testing team

determines the required environment for testing, the types of testing, and the roles and responsibilities [11].

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 35

Test Case Development

Testers mostly determine requirements or test plans to create test cases. Testers start creating test cases and test scripts

in this phase. All preconditions should be taken into consideration while creating the test case and the test script.

Verification of the test case should be done in this phase. If a test environment is available, then the test team will create

test data [11]. The test team also prepares the Requirement Traceability Matrix in this phase [1].

Test Environment Setup

This phase plays a vital role in the Software Testing Life Cycle. It decides the conditions under which software is tested

[1][11]. This activity is independent. That is, testers can start performing this activity along with the development of the

product. In this requirement, a list of hardware and software is prepared. The tester does not decide the test

environment; however, it is created by the developer and customer [11]. This phase can run in parallel with the design

phase. The deliverables in this phase are the test environment and the smoke test results [1].

Test Execution

After test environment setup, execution of test cases is performed based on the defined test plan [1]. Testers start

executing test cases, and if any failure occurs in it, testers should report it [11]. All the positive and negative test cases

must be executed and documented in a proper format. Defect report should be prepared for failed test cases and

reported to the development team for rectification [1]. Then, the development team fixes that bug. Testers retest that

bug and mark it as closed if it is fixed or reopen it if it is not fixed [11].

Test Closure

In this phase, evaluation of different activities, including completion time, quality, execution, business conditions, and

quality of software, is carried out. Then, testers prepare the test closure report. Quantitative report should be prepared

to give work product to customers. It is very important to find out how many defects have occurred, and their

distribution according to their severity and priority should be done [11]. Once testing is completed, the matrix, reports,

and results are documented. It is the last phase of STLC. STLC is a very important phase of SDLC, and the final product

cannot be released without passing through these testing processes. The different phases of the Software Testing Life

Cycle must be executed in the same order in which they are defined [1].

Fig.2. Phases of software testing life cycle.[16]

Methodology

This study is based on the descriptive-analytical survey methodology, where a questionnaire was used as the primary

tool for collecting the data from the participants. The purpose of this methodology is to describe the reality of

compliance with the implementation of software testing within the General Electricity Company of Libya. It also

analyzed the obtained results in order to identify the potential shortcomings or strengths in the current practice and to

determine the factors influencing the execution of the tests.

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 36

Study Population

The study population included the employees involved in or affected by software development processes at the General

Electricity Company across several Libyan cities. The sample consisted of various categories related to software, such

as programmers, developers, systems engineers, managers, technicians, and quality assurance staff. These categories

were selected to ensure comprehensive representation of different perspectives and to assess the extent of compliance

with the formal implementation of software testing.

Data Collection Tool

An electronic questionnaire was employed as the primary data collection instrument and distributed to participants

within the study population. The questionnaire consisted of close-ended questions specifically designed to assess the

level of compliance with software testing practices. It addressed several key themes, including the types of tests applied

(unit, integration, system, and acceptance testing), the entities responsible for conducting these tests, the extent of

documentation prepared for test plans, test cases, and test results prior to system approval, and the adequacy of the

testing environment before implementation. Additional areas of focus included the conduct of formal reviews of system

quality prior to operation, the occurrence of software issues following delivery, the degree to which system

requirements were met, and the factors influencing compliance with software testing implementation.

Based on its methodology, the study can be classified as a survey study in terms of data collection, and as a descriptive-

analytical study in terms of the presentation and interpretation of results. This dual classification enables a realistic

depiction of the level of compliance with software testing practices within the Libyan electricity sector. A total of 30

valid responses were obtained. To ensure the relevance of the sample, participants were initially asked whether they

possessed knowledge or familiarity with software testing. If the response was negative, the questionnaire was

terminated. This filtering mechanism ensured that the final sample consisted exclusively of individuals directly engaged

in testing activities, including testers, developers, engineers involved in system development, and software quality

specialists

Results

This section aims to present the results obtained through the analysis of the questionnaire distributed to a group of

employees at the General Electricity Company across several Libyan cities. These employees represent different

professional categories, including programmers, developers, systems engineers, managers, technicians, and quality

assurance teams. The results focus on multiple aspects related to the level of compliance with software testing

implementation, such as the types of tests applied, the entities responsible for conducting them, the level of

documentation, the availability of a testing environment, the presence of a formal quality review, and the identification

of software issues that emerge after system delivery. The data are presented in the form of percentages that illustrate

the variation in practices among the target groups. This presentation seeks to provide a comprehensive picture of the

current state of software testing practices within the company. It was found that females represented 7% in the

developer community within the company, while males accounted for 93% of the participants in the company, as

illustrated in (Table1).

Table1. Distribution of participants according to their gender

Table2. Distribution of participants by years of experience in the Electricity Company

Percentage Respondents Years of experience

27% 8 Less than 5 years

20% 6 5-10 years

13% 4 10-15 years

40% 12 More than 15 years

Percentage Respondents Gender

7% 2 Female

93% 28 Male

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 37

 The results indicate that the most represented group among the participants is those with long experience (more than

15 years), accounting for 40% of the total sample. This distribution reflects the study’s strong reliance on the opinions

of well-experienced experts who possess extensive practical knowledge in the field of software development and

systems management. The high proportion of this group adds greater credibility to the findings, given that long years

of experience are associated with increased awareness of the importance of formal software testing and its application

in accordance with established quality standards.

Table.3. Distribution of participants by job position in the Electricity Company

Percentage Respondents Job Roles

13% 4 Developers

20% 6 System engineers

33% 10 Programmers

20% 6 Managers

7% 2 Quality Assurance

7% 2 Technicians

100% 30 Total

The results showed that the most represented category was the programmers, represented by 33% of the sample,

followed by systems engineers and managers, each with an equal share of 20%. In contrast, developers constituted only

13% of the total sample. Technicians and quality assurance staff were the lowest category, represented by 7%. These

findings indicate that the study relied heavily on the perspectives of practitioners (programmers and systems engineers)

compared to other categories. That is, developers were not significantly represented in the survey (13%) compared to

programmers or systems engineers. The small number of developers may reflect the actual situation within the

Electricity Company, where work is mainly concentrated among programmers and systems engineers, while

developers play a smaller or more limited role. It may also suggest that development tasks are distributed among

programmers rather than assigned to the development department, or that developer participation in the survey was

relatively weak.

Table 4. The respondents’ knowledge of software testing, their involvement in software development, and their direct

experience with software testing

Experience directly in testing Participate in development Familiar with testing

Percentage Respondents Percentage Respondents Percentage Respondents

80% 24 66.6% 20 73.3% 22 Yes

20% 6 33.3% 10 20% 6 No

----------- ----------- ------------ ----------- 6.7% 2 Not sure

The results showed that the majority of participants (73.3%) know software testing, while 20% indicated that they had

no knowledge, and 6.7% stated that they were unsure. This distribution reflects that most members of the sample

possess a cognitive awareness of the fundamental concepts of software testing. The majority of participants (66.6%) had

direct experience in participating in software development processes, while 33.3% had not previously been involved in

such activities. This distribution indicates that two-thirds of the sample possess practical experience in system and

software development, which provides the study with an important applied dimension and enhances the credibility of

the findings related to compliance with software testing procedures. Moreover, most of the participants had direct

practical experience in software testing, with 80% confirming that they had engaged in actual testing practices, while

20% reported lacking such experience. These finding highlights that the majority of the sample do not rely solely on

theoretical knowledge but also possess applied practical experience, which strengthens the validity of the collected data.

However, the presence of 20% of participants without direct experience reflects that adherence to practical testing

practices is not comprehensive across all categories.

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 38

Table 5: The frequency of respondents across the testing levels being implemented

Percentage Respondents Testing levels

20.7% 12 Unit Testing

13.8% 8 Integration Testing

31.0% 20 System Testing

34.5% 22 Acceptance Testing

Fig 3. The proportion of manual and automated testing usage

Since the participants were allowed to select more than one type of test, the survey results revealed a noticeable variation

in the levels of compliance with different software testing practices. The highest percentage was for acceptance testing

(34.5%), followed by system testing (31.0%). In contrast, unit testing and integration testing were less frequently

implemented (20.7%) and (13.8%), as illustrated in (Figure 4). This distribution reflects that the participants place greater

emphasis on the final testing stages related to verifying system readiness and user acceptance, rather than on the initial

tests of individual units or their integration. This may indicate that the company’s working environment tends to

prioritize overall system outputs and end-user satisfaction, while relatively neglecting early-stage testing, which is

essential for ensuring software quality and reducing failures in later phases. The weak implementation rates of unit and

integration testing may represent a gap in the software testing lifecycle, as these two types of tests constitute the first

line of defense against software defects and contribute significantly to reducing the cost of later fixes. Therefore, the

current findings highlight the need to strengthen the culture of early testing among developers and engineers and to

adopt stricter policies to ensure comprehensive implementation of all testing levels. The results showed that developers’

compliance with testing is still largely confined to manual execution, with a high rate of 73.3%, while reliance on

automated testing did not exceed 26.7%. This reveals a gap in the level of professionalism in practice, as automated

testing is expected to constitute a fundamental component of developers’ adherence to modern testing standards, as

illustrated in (Figure 5).

 Fig.5. The person responsible for system and acceptance

testing

Fig.4.The person responsible for unit and integration

testing

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 39

The survey results showed that the responsibility for conducting unit and integration tests mostly falls on the developer

himself or the development team (66.7%), while this task was assigned to an independent internal testing team (13.3%)

or to an external party (13.3%). Meanwhile, 6.7% of the participants indicated that there is no specific entity responsible

for these tests. The main responsibility for conducting system and acceptance tests lies with the internal IT department,

accounting for 66.7% of the total participants, while 20% indicated that the end user plays this role. In contrast, only

13.3% confirmed that the developing company is responsible for performing these tests.

Table.6. illustrates the occurrence of software problems after the system delivery

Percentage Respondents issues

60% 18 Yes, many

26.7% 8 Yes, but few

6.7% 2 No

6.7% 2 Not sure

Furthermore, the results showed that a large proportion of participants (60%) reported recurring software problems

after system delivery, while 26.7% indicated the presence of problems, but to a limited extent. In contrast, only 6.7%

confirmed the absence of problems or stated that they were unaware of their existenc. This distribution reflects that the

majority of developed systems still suffer from software errors after delivery, which indicates the weak effectiveness of

the testing procedures applied, particularly in the early stages (unit testing and integration testing). The high percentage

of participants (60%) who confirmed the existence of frequent problems after delivery highlights real challenges in

quality control and ensuring the efficiency of the system’s lifecycle. Neglecting the systematic application of unit and

integration tests causes the accumulation of errors, which are only discovered in the final stages or even after the system

is deployed. Therefore, strengthening the culture of early testing and adopting stricter methodologies for quality

assurance should be considered among the top priorities in the current work environment.

As for the level of documentation of testing activities, the survey results revealed that the level of documentation is still

inconsistent among the participants, as 46.7% reported that they always document the test plan and test cases, while

20% rarely do so, and only 6.7% mentioned that they sometimes document them. Meanwhile, 20% of the participants

do not carry out the documentation process at all, and 6.7% confirmed that they were unaware of the existence of such

a procedure, as illustrated in (Figure 6). This finding is an indicator of weak institutional commitment to quality

standards. The literature emphasizes that documenting the test plan and its cases constitutes the cornerstone for

ensuring error traceability, evaluating test coverage, and facilitating subsequent review processes.

It was also found that the documentation of test results before system approval varies among participants, as 46.7%

confirmed that they document the results regularly, while 26.7% indicated that they sometimes do so. In contrast, 20%

stated that they never document the results, and 6.7% reported that they were unaware of the existence of this practice,

as illustrated in (Figure 7). This distribution reflects that less than half of the sample adheres to the regular

Fig.6. Documentation of the test plan and test cases Fig.7. Documentation of test results

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 40

documentation of test results, which indicates an institutional shortcoming in the application of systematic quality

practices. Documenting test results represents a pivotal step in ensuring transparency in the acceptance process and

providing a reference record to rely on in the event of future problems. Moreover, the absence or limitation of

documentation may help explain the high percentage of issues that arise after system delivery due to the lack of official

evidence to prove that the system has successfully passed all testing stages.

The survey revealed that 40% of participants confirmed the existence of a prepared testing environment before system

implementation, while 46.7% indicated the absence of such an environment, and 13.3% stated that they were unaware

of its existence, as illustrated in (Figure 8). This result reflects that only a small number of participants prepare a formal

testing environment before implementation, while the majority of participants neglect this practice. This is a clear

indicator of a fundamental shortcoming in the testing lifecycle, as the absence of an independent testing environment

increases the likelihood of post-delivery failures and undermines the reliability of the results. In addition, the results

showed that the formal review of system quality before operation is not carried out systematically in most cases, as

33.3% of participants indicated that this review is always conducted, while another 33.3% stated that it is rarely

conducted, and 20% mentioned that it is sometimes conducted. Meanwhile, 13.3% reported that they were unaware of

the existence of such a practice, as illustrated in (Figure 9). As for the functionality of the system, 40% of the participants

reported that the delivered systems do not function according to all the agreed specifications and requirements, while

another 40% confirmed that the systems actually meet all specifications and requirements. Meanwhile, 20% indicated

that the systems do not fulfill these specifications, as illustrated in (Figure 18). This distribution reflects that nearly half

of the systems suffer from gaps or shortcomings in meeting the agreed requirements, which indicates the presence of

deficiencies in the testing process and quality control before delivery.

Hence, it is concluded that:

• Documentation of the test plan and test cases is always 46.7%

• Documentation of test results before approval is only 46.7%

• Preparation of a testing environment is absent by 46.7%.

• Formal review before operation is always only 33.3%.

The current result aligns with these indicators to show that the absence of a formal methodology for testing and

documentation has directly affected the compliance of systems with specifications. In other words, the weak formal

commitment to testing leads to the delivery of systems that do not fully meet the requirements.

• Unit and Integration Testing: carried out by 66.7% of developers or development teams.

• System and Acceptance Testing: mainly the responsibility of the internal IT department (66.7%), with a limited

role for the developing company (13.3%) and the end user (20%).

• Post-delivery Issues: 60% confirmed the existence of many software problems after delivery.

Accordingly, it can be concluded that the commitment of developers and engineers to testing in the studied work

environment does exist, but it remains selective and incomplete, as it is concentrated on the final stages while neglecting

 Fig.8. provision of a testing

environment

Fig.9. Conducting a formal review Fig.10. Functionality of delivered systems

according to requirements

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 41

the early stages and supporting quality elements. This negatively affects the quality of the systems and leads to the

emergence of problems after approval. The results also showed that the commitment to software testing within the

Libyan electricity company still lacks a formal and systematic character. It was found that the main focus is placed on

final tests (system and acceptance), while early tests (unit and integration) are not carried out with the same level of

commitment. The results also indicated that developers play a central role in the early stages of testing, whereas

responsibility for the final stages is mostly transferred to the IT department, with limited involvement from the

developing company and end users. In addition, the findings revealed weaknesses in documentation (whether for the

test plan or for results before approval), the absence of an independent testing environment for nearly half of the

participants, and low rates of formal review before operation. These factors were reflected in the high rate of software

problems observed after delivery. Therefore, it can be concluded that current practices reflect a partial and informal

commitment to testing. It highlights the need to develop institutional policies and mandatory standards that would

enhance the quality of software systems and reduce operational problems.

The study results revealed a set of factors that hinder the commitment to implementing software testing. For example,

time constraints posed a challenge for developers (6.1%), while 8.2% of the participants indicated that the absence of a

formal test plan reduces the effectiveness of testing. The lack of specialized personnel emerged as one of the most

prominent human challenges by 18.4% of the participants, whereas excessive reliance on the developing company was

identified as an influential factor by 12.2% of the participants. At the organizational level, 12.2% of the participants

stated that the absence of a clear testing policy is considered an obstacle, while weak collaboration between teams

limited implementation efficiency 14.3%. The results showed that insufficient involvement of end users constituted an

additional factor by 10.2% of the participants. Finally, weak awareness of the importance of testing emerged as a major

determinant, 18.2%, reflecting the need to strengthen a culture of quality and ensure the integration of testing into

institutional practices (Figure 11).

In addition, the results showed that the commitment to implementing tests is also affected by the extent of applying the

adopted quality standards. A number of participants indicated the absence of clear adherence to unified software testing

standards, which was reflected in the variation of output quality. This mirrors the need to integrate quality standards

such as ISO/IEC/IEEE 29119 or similar within institutional testing procedures in order to improve the level of

commitment and increase the reliability of the developed systems. There are only 20% of the participants committed to

standards, while 53.3% reported non-compliance, and 26.7% indicated that they were not aware of the existence of

quality standards. This result indicates a clear gap in adopting international standards regulating software testing

(Figure 12).

The results also showed that the implementation of security tests is characterized by noticeable variation. A total of

46.7% of participants stated that these tests are always conducted, while 40% reported that they sometimes conduct the

Fig.12. Implementation of quality standards

Fig.11. Factors influencing the implementation of software testing

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 42

test, 6.7% indicated that they never conduct the test, and 6.7% mentioned that they were unaware of their existence.

These results highlight that the application of security tests within the company is still inconsistent. Although a

considerable percentage regularly carry them out, the partial reliance or complete absence of such tests reflects a

shortcoming in ensuring the protection of systems and data from potential security risks, which requires further

organization of these practices (Figure 13).

These results are not limited to a particular city, but were obtained from several branches of the electricity company in

different cities across Libya. This gives the study additional strength in terms of representation and makes the findings

more comprehensive and objective. They reflect the reality of software testing practices in the electricity sector at the

national level. Moreover, this geographical diversity reduces the likelihood of bias in the results toward a specific work

environment or management. It highlights that the observed challenges (such as the absence of a testing environment,

weak documentation, and the high rate of post-delivery problems) are general characteristics of the software work

environment in this sector, rather than exceptional cases.

Recommendations

Based on the findings of the study, several recommendations can be advanced to strengthen organizational commitment

to software testing and ensure its systematic implementation. First, the employment of specialized staff—including

developers, quality engineers, and dedicated software testers—is essential to address the shortage of expertise and

guarantee the structured execution of testing activities. Equally important is the enhancement of awareness and

continuous professional development, which can be achieved through training programs and workshops that

emphasize the significance of software testing and the use of automated methods to reduce knowledge gaps. The

establishment of a formal test plan is also critical, as it provides a clear, written framework aligned with international

quality standards and prevents randomness in the testing process. Complementing this, the adoption of comprehensive

institutional testing policies is necessary to formally define responsibilities, roles, and mechanisms, thereby ensuring

accountability and consistency. Strengthening collaboration among development, quality assurance, and technical

support teams through improved communication and integration mechanisms further reduces inefficiencies and weak

coordination. End-user involvement should be increased, particularly during acceptance testing, to ensure that systems

meet practical requirements and expectations. Effective time management is another priority, requiring sufficient

allocation of testing activities within the software project lifecycle and their inclusion in the overall work schedule.

Finally, adherence to international quality standards, such as ISO/IEC/IEEE 29119, is recommended to standardize

procedures, document requirements, and foster a culture of quality across the organization. Collectively, these measures

provide a structured pathway toward enhancing compliance with software testing practices and improving overall

system reliability.

Fig.13. Implementation of security testing

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

Alq J Sci. 2026;2(1):27-43
3https://doi.org/10.69667/ajs.2610

Alqalam Journal of Science

 مجلـــة القلم للعلـوم

https://alqalam.utripoli.edu.ly/index.php/AR

Copyright Author (s) 2026. Distributed under Creative Commons CC-BY 4.0
Received: 10-11-2025 - Accepted: 09-01-2026 - Published: 14-01-2026 43

Conclusion

This study concluded that software testing at the Libyan electricity company still faces multiple challenges related to

human, organizational, and technical aspects (such as the absence of a testing environment, weak documentation, and

the high rate of post-delivery problems). The results showed that reliance on manual testing far exceeds automated

testing. The commitment to quality standards and security testing is limited and inconsistent. A set of influencing factors

also emerged, including the lack of specialized employees, the absence of a formal test plan, weak collaboration between

teams, and limited awareness of the importance of testing. These findings indicate that software quality within the

company is exposed to risks associated with software errors and frequent post-delivery modifications, which

undermine the efficiency and credibility of the systems. Enhancing commitment to testing requires the adoption of clear

formal policies, the provision of specialized training programs, the expansion of automated tools usage, and greater

involvement of end users in the testing process. Furthermore, the study suggests that future research should expand on

examining the impact of applying modern automated testing tools and linking them to international standards such as

ISO/IEC/IEEE 29119, thereby increasing the opportunities to improve software quality in the local context.

Conflict of interest. Nil

References

1. AlbaUmar MA. Comprehensive study of software testing: Categories levels techniques and types. Int J Adv Res. 2019;7(6):9-

16.

2. Anand A, Uddin A. Importance of software testing in the process of software development. Int J Sci Res Dev. 2019;12(6):1-

5.

3. Anwar N, Kar S. Review paper on various software testing techniques & strategies. Glob J Comput Sci Technol.

2019;19(2):43-9.

4. Arumugam AK. Software testing techniques & new trends. Int J Eng Res Technol. 2019;8(12):2278-0181.

5. Ashiq S, Masood AB, Fakhar MH, Iqbal MW, Nazir Z, Muhammad HAB, et al. Challenges and barriers to software testing.

Bull Bus Econ. 2024;13(1):357-66.

6. Bajjouk M, Rana ME, Ramachandiran CR, Chelliah S. Software testing for reliability and quality improvement. J Appl

Technol Innov. 2021;5(2):40-6.

7. Bhatt D. A survey of effective and efficient software testing technique and analysis. Iconic Res Eng J. 2017;1(8):326-30.

8. Islam M, Khan F, Alam S, Hasan M. Artificial intelligence in software testing: A systematic review. In: TENCON 2023-2023

IEEE Region 10 Conference (TENCON); 2023 Oct 31-Nov 3; Chiang Mai, Thailand. IEEE; 2023. p. 524-9.

9. Patidar R, Sharma A, Dave R. Survey on manual and automation testing strategies and tools for software application. Int J

Adv Res Comput Sci Softw Eng. 2017;7(4):424-31.

10. Raksawat C, Charoenporn P. Software testing system development based on ISO 29119. J Adv Inf Technol. 2021;12(2):128-

34.

11. Rana I, Goswami P, Maheshwari H. A review of tools and techniques used in software testing. Int J Emerg Technol Innov

Res. 2019;6(4):262-6.

12. Rani S, Gupta D. A comparative study of different software testing techniques: a review. J Adv Shell Program. 2018;5(1):1-

8.

13. Sethi MA. A review paper on levels, types & techniques in software testing. Int J Adv Res Comput Sci. 2017;8(7):269-71.

14. Srivastava N, Kumar U, Singh P. Software and performance testing tools. J Inform Electr Electron Eng. 2021;2(1):1-12.

15. Sundaram A. Technology based overview on software testing trends, techniques, and challenges. Int J Eng Appl Sci Technol.

2021;6(1):94-8.

16. Taley DS, Pathak B. Comprehensive study of software testing techniques and strategies: a review. Int J Eng Res.

2020;9(8):817-22.

17. Umar MA. A study of software testing: categories, levels, techniques, and types. Authorea Preprints. 2023 Jul 11.

https://doi.org/10.69667/ajs.26103
https://alqalam.utripoli.edu.ly/index.php/AR

